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Non-technical summary 

Difference-in-Differences (DiD) is a popular method to estimate the effects of policy changes 

or interventions. DiD compares the differences in outcomes between groups that have been 

exposed to an intervention (treated) and those not exposed (control), both before and after the 

intervention. The difference in these differences attributed to be the effects of the intervention. 

When data is available for multiple periods before and after the intervention, dynamic effects 

of the intervention are estimated using an event-study (ES) approach. ES allows researchers to 

observe how the effect changes with varying length of exposure.  

This paper addresses an important gap in the literature on DiD and ES approaches. Recent DiD 

and ES methodological developments have raised concerns about potential bias in estimated 

effects when these approaches are implemented using a two-way fixed effects (TWFE) 

estimator, especially in the context of heterogeneous treatment effects and staggered 

interventions. Several alternative estimators have been proposed that circumvent the so-called 

‘bad control’ units problem and recover unbiased treatment effects. However, the focus has 

primarily been on linear outcome models. Our research extends this discussion to nonlinear 

outcome models such as count and binary outcomes, which are prevalent in many fields of 

economics. Finally, for empirical illustration, we apply the extended estimators to a prior 

published work. 

In this study, we explore whether the issues associated with staggered designs also apply to 

nonlinear outcome models, and compare the relative performance of the standard TWFE-

DiD/ES estimator to that five alternative estimators (proposed by Sun & Abraham, 2021; 

Callaway & Sant’Anna, 2021; Wooldridge, 2023; Borusyak et al., 2021; and Stacked 

regression), by employing Poisson quasi maximum likelihood estimator for count outcome and 

conditional logistic regression for binary outcome. Our simulation results confirm that the 



2 
 

issues associated with TWFE-DiD/ES with staggered designs also apply to nonlinear outcomes 

models for both DiD and ES designs. We also find that if alternative estimators are used straight 

of the shelf for count and binary outcomes, some of them produce biased estimates. In 

summary, the simulation study provides a comprehensive analysis of estimating treatment 

effects in the context of staggered interventions with count and binary outcomes.    

Our findings have significant implications for applied research involving limited dependent 

variables. These results provide valuable insights into the performance of various estimators in 

the context of count and binary outcomes. They offer guidance for applied researchers, with 

the caveat that the extensions of the estimators employed in this paper were not proposed in 

the original papers cited, nor had their properties formally studied (except Wooldridge (2023)). 

Moreover, the paper emphasizes the need for further research to explore the (asymptotic) 

properties of the extended alternative estimators.   
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1. Introduction 

Difference-in-Differences (DiD) is one of the most widely used quasi-experimental designs 

employed to estimate causal effects (Abadie, 2005). The difference in outcomes between 

treated (those exposed to treatment) and control (those not exposed) units is compared before 

and after a policy intervention, with the difference in these differences attributed to be the 

effects of the intervention (Athey and Imbens, 2006). In the canonical DiD set-up, effects of 

the intervention are estimated over the period following the policy intervention, implicitly 

assuming that effects are homogenous or that variation in effects is not of direct interest and 

does not bias the overall treatment effect estimates. Where data is available for multiple periods 

before and after the intervention, effects in the literature are frequently estimated using an 

event-study (ES) design (see de Chaisemartin & d'Haultfoeuille, 2020). An ES provides 

treatment effect estimates in each period both before (during which effects should be null when 

the parallel trend and no-anticipations assumptions hold) and after the intervention. ES 

therefore conveniently allows researchers to explore the dynamic effect of a policy 

intervention, which is how the effect varies across different lengths of exposure to the 

treatment. 

Recent developments in the literature on both DiD and ES have raised important concerns that 

when these approaches are implemented using two-way fixed effects (TWFE) models, they 

may provide biased effect estimates if effects are heterogeneous and the intervention is adopted 

or implemented in a ‘staggered’ fashion, that is at different points in time for different units or 

cohorts (Goodman-Bacon, 2021; de Chaisemartin & d'Haultfoeuille 2020; Borusyak et al., 

2021). In essence, this literature shows that TWFE estimators rely on a weighted average of 

unit-level treatment effects and that earlier treated cohorts implicitly act as ‘controls’ for 

comparisons involving later treated units within TWFE estimators. Under heterogeneous 

treatment effects (HTE), these units may be ‘bad’ control units for such comparisons since the 
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outcomes for these earlier treated units will reflect their treatment effects, leading to biased 

effect estimates for the later treated units in comparisons that include them. If ignored, this 

leads TWFE to provide biased estimates and, in extreme cases, can even result in effect 

estimates having the incorrect sign.  

A number of alternative approaches have been proposed to overcome this limitation of standard 

TWFE regressions (Borusyak et al., 2021; Gardner, 2022; Sun & Abraham, 2021; Callaway & 

Sant’Anna, 2021; Wooldridge, 2021; De Chaisemartin & d'Haultfoeuille 2020). The 

appropriateness of these alternative approaches for staggered interventions has been primarily 

demonstrated in the context of linear outcome models. However, limited dependent variables 

(e.g., count or binary) and hence nonlinear outcome models are prevalent in many fields of 

applied economics and policy evaluation and thus, it is important to understand how these 

recently developed approaches perform in such nonlinear settings.  

Moving from linear to nonlinear outcome models raises a number of issues for DiD /ES, even 

in non-staggered designs.  For instance, Taddeo et al. (2022) highlight that, unlike in linear 

models, the true effect and the parameter on an interaction between indicators for the treatment 

group and post-treatment period do not coincide in nonlinear models (Ai and Norton, 2003). 

Also, the Parallel Trends (PT) assumption underlying DiD may hold for the observed outcome 

(measured on the ‘natural’ scale) or for an underlying latent variable (measured on a 

‘transformed scale’) (Barkowski, 2022). An additive effect on one scale may imply a 

multiplicative effect on another (Ciani and Fisher, 2019). However, these studies have not 

considered the additional complexities raised by staggered treatment designs. Similarly, the 

staggered DiD/ES literature has almost exclusively focused on linear TWFE-DiD/ES 

estimators with a few notable exceptions, such as Wooldridge (2021, 2023).  
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Given the prevalence of limited dependent variables in applied research, this is an important 

knowledge gap, which we address in this paper by rigorously comparing the performance of 

the standard TWFE-DiD/ES estimator to that of a number of recently proposed alternative 

estimators, focussing on count and binary outcomes. The five estimators considered here as 

they are frequently cited in the recent DiD/ES econometric literature, and include: the 

Interaction-weighted estimator (Sun & Abraham, 2021), an Inverse Probability Weighting 

(IPW) estimator (Callaway & Sant’Anna, 2021), a Stacked Regression (Cengiz et al., 2019; 

Deshpande and Li, 2019), the Extended-TWFE estimator (Wooldridge, 2023), and the 

Imputation estimator (Borusyak et al., 2021). Currently, each of these proposed alternative 

estimators uses linear fixed effect models, with the exception of Wooldridge (2023).  

Our simulation results show that standard TWFE-DiD and TWFE-ES model for count and 

binary outcomes produces biased estimates under staggered interventions when effects are 

heterogeneous. This result confirms that the negative weighting problems arising from ‘bad 

controls’ units also occur for limited dependent variables and nonlinear outcome models. 

Importantly the simulation shows that under homogeneity in effects all estimators (extended to 

account for the non-linearity of the outcome) estimate unbiased coefficients. Turning to the 

case of heterogeneous treatment effects, we find that the form of heterogeneity is important. 

With nonlinear outcome models, TWFE-DiD produces biased estimates for any form of 

heterogeneity and the TWFE-ES design produces unbiased estimates when effects vary across 

time, which aligns with staggered designs for DiD and ES for linear outcome models (Baker et 

al., 2022). However, when effects vary across cohorts or across both cohort-period, only the 

interaction-weighted, IPW, and extended-TWFE estimators produce unbiased estimates for 

both count and binary outcomes. The performance of interaction-weighted, IPW and extended-

TWFE estimators for count and binary outcomes is parallel with the estimators’ performance 
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for linear outcome model, which implements ordinary least squares (OLS) to estimate the 

effects.    

This study makes a number of contributions. First, we explore whether the issues associated 

with staggered designs also apply to nonlinear outcome models and find (as expected) that they 

do for both DiD and ES design. Second, we extend the alternative estimators to account for 

non-linearity in outcomes by applying them using nonlinear outcome models. For example, we 

use the Poisson quasi-maximum likelihood estimator (QMLE) for count outcomes, and the 

Conditional Logit Fixed Effect (CLE) estimator for binary outcomes for each of the recent 

estimators except the IPW estimator. Third, we show the extension of IPW estimator to count 

and binary outcomes for DiD and ES approaches. Fourth, we compare the performance of the 

(extended) methods, using % bias and root mean squared error, within a carefully designed 

Monte Carlo simulation study. Finally, we apply TWFE and the alternative estimators in an 

empirical case study, revisiting Yadav et al. (2023)’s empirical analysis that examined how co-

authorship with a co-located star scientist affects the co-author's productivity. Our estimations 

complement Yadav et al. (2023) and suggest that co-authoring with a star scientist has a 

positive effect on the co-author’s productivity, with moderate differences found in the 

magnitude of the effects across the methods. 

The remainder of the paper is outlined as follows. In section 2, we briefly introduce the 

canonical DiD and PT assumptions under non-linearity, discuss the issues related to DiD, and 

extend to the event-study (ES) framework. Section 3 discusses the alternative estimators to 

estimate the causal effect under heterogeneity. Section 4 presents the Monte Carlo simulation 

design. We present the results in section 5. Conclusions are provided in section 6. 

2. Methods 

2.1 The DiD estimator 
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We first introduce the traditional (canonical) 2 × 2 DiD where there are two time periods, 𝑡 =

{1,2}, with treatment occurring only in the second period for units in the treated group, 𝐷𝑖 = 1, 

while other units remain untreated in both periods (control group), 𝐷𝑖 = 0. We denote 𝑌𝑖𝑡(0) 

and 𝑌𝑖𝑡(1) as unit 𝑖’s the potential outcomes under each treatment status. The observed outcome 

is given by 𝑌𝑖𝑡 = 𝐷𝑖𝑌𝑖𝑡(1) + (1 − 𝐷𝑖)𝑌𝑖𝑡(0). In the absence of covariates, we can write the 

two-way fixed effect (TWFE) DiD regression as follows:  

𝑌𝑖𝑡 = 𝛼𝑖 + 𝜃𝑡 + 𝛽𝐷𝑖𝑡 + 𝜀𝑖𝑡        (2.1) 

Where 𝐷𝑖𝑡 is an indicator for whether unit 𝑖 is exposed to the intervention in period 𝑡, 𝛼𝑖 and 

𝜃𝑡 are unit and period fixed effects that account for time invariant and period specific 

unobserved confounders respectively.1 It is straightforward to show that the estimated 

coefficient 𝛽̂ obtained from equation (2.1) is equivalent to 𝜏̂ ,an estimate of the estimand of 

interest, which is the average treatment effect on the treated (ATT) in period 𝑡 in the canonical 

DiD setup (Roth et al., 2023): 

𝜏𝑡 = Ε[𝑌𝑡(1) − 𝑌𝑡(0)| 𝐷 = 1] 

2.2 DiD estimator for staggered interventions 

The TWFE model in equation (2.1) can be readily extended to account for many periods or 

units. However recent advances in the DiD literature (Roth et al., 2023; Baker et al., 2022) have 

highlighted the potential for bias in staggered designs. Violation of the parallel-trends and the 

no anticipation (i.e. absence of pre-effects) assumptions leads to bias. However, even where 

these assumptions hold, bias may ensue. TWFE regression yields unbiased estimates of the 

                                                           
1. In the simple 2 periods, 2 groups (2x2) case, this can be simplified to  

𝑌𝑖𝑡 =  𝛼 + 𝛿𝐷𝑖 + 𝛾𝑃𝑡 +  𝛽𝐷𝑖 ∗ 𝑃𝑡 + 𝜀𝑖𝑡 

where P is a post-intervention indicator equal to 1 for period 2 and 0 in period 1, and 𝛿 captures time-invariant 

differences between the groups’ outcomes, 𝛾 captures differences between the two periods common to both 

groups. 
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average treatment effect for the treated (ATT) when there is homogeneity in treatment effects 

across time and units (Goodman-Bacon, 2021; Borusyak et al., 2021). However, issues arise 

when treatment effects are heterogeneous and units are exposed to the intervention at different 

time points.  

In staggered designs with HTEs, estimated counterfactual outcomes for later treated cohorts 

based on the standard TWFE model implicitly rely on outcomes for earlier treated units and 

thus are biased by variation in effects overtime, making these units ‘bad’ controls. Numerous 

studies have shown the TWFE-DiD estimator (𝛽) is implicitly a weighted average of a number 

of different 2 × 2 DiD treatment effects, where the weights can be negative in the presence of 

HTEs since TWFE implicitly differences out some of these heterogeneous effects (Goodman-

Bacon, 2021;  de Chaisemartin & d'Haultfoeuille, 2023). The magnitude of weights depends 

on a number of factors including the time of treatment, the relative size of each treatment 

cohort, and the number of time periods (Goodman-Bacon, 2021). The implicit counterfactual 

underlying the TWFE estimate picks up changes in effects affecting earlier treated units, 

making them ‘bad control’ units for later comparisons, which feed through into the overall 

TWFE-DiD estimate. Several approaches have been proposed which seek to avoid using ‘bad 

control’ units when constructing counterfactuals and hence avoid biased effect estimates 

(Callaway & Sant’Anna, 2021; Sun & Abraham, 2021; Cengiz et al., 2019; Borusyak et al, 

2021; Wooldridge, 2021; inter alia). We briefly describe five of these approaches in section 3 

below, however this is an area of very active research2. 

2.3. Event study design and potential outcome framework 

Event-study (ES) designs extend DiD designs by estimating effects for each pre- and post-

intervention period (Schmidheiny and Siegloch, 2019). In current practice, researchers use the 

                                                           
2. see Roth et al., 2023, for a recent review  
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classical TWFE-ES specification (Borusyak et al., 2021).  This specification allows treatment 

effects to vary over time, and can be written as: 

                     𝑌𝑖𝑡 = 𝛼𝑖 + 𝛿𝑡 + ∑ 𝛽𝑗

−2

𝑗=−𝑘

𝐷𝑖𝑡
𝑗

+ ∑𝛽𝑗

𝑙

𝑗=0

 𝐷𝑖𝑡
𝑗

+ 𝜀𝑖𝑡              (2.2) 

Assume  𝑔𝑖 captures the first period in which the unit is exposed to the intervention, then 𝐷𝑖,𝑡
𝑗

 

is a relative-period treatment indicator that takes a value of 1 for unit i in the period j periods 

since unit i was first exposed to the intervention, and zero otherwise (i.e. 𝐷𝑖,𝑡
𝑗

= 1{𝑡 − 𝑔𝑖 = 𝑗}), 

𝑘 and 𝑙 are positive constants where 𝑘 is the maximum number of leads and 𝑙 is the maximum 

number of lags. We exclude a relative period (𝐷𝑖,𝑡
−1) to avoid multi-collinearity, in which case 

effects are expressed relative to the effect in this period (which should be 0 in the absence of 

anticipation effects). In this specification, the researchers are interested in the coefficient of 𝛽𝑗 

for periods  𝑗 ≥ 0, and interpret these coefficients as the ATT at different periods of exposure 

since the treatment (Callaway & Sant’Anna, 2021).  

Since the approach includes TWFEs, the combination of staggered intervention and HTEs also 

biases TWFE-ES (Baker, 2022). The standard TWFE-ES specification (equation 2.2), unlike 

specification (2.1), yields a sensible causal estimand when there is staggered adoption and 

homogeneity in treatment effects or heterogeneity across time. However, when there is 

heterogeneity across adoption cohorts, the coefficients, 𝛽𝑗, are difficult to interpret for two 

reasons. First, the ES suffers from the negative weighting issues discussed above and, second, 

𝛽𝑗 coefficients can be contaminated from the effects of other periods which influence the 

estimated counterfactual if unaccounted for (Sun & Abraham, 2021). 

2.4 DiD and ES estimators for limited dependent variables 

When 𝑌𝑡 is restricted in some way (e.g. bounded at zero or binary), the linear PT assumption 

may be unrealistic (Wooldridge, 2023). When implementing nonlinear DiD models for limited 
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dependent variables, the applied researcher must determine whether it is plausible that the PT 

assumption holds either on the natural scale or on a transformed scale (Barkowiski, 2021) based 

on intuitive knowledge of the empirical study. In this study, we focus on the scenario where 

the PT assumption holds on the transformed (latent) scale and perform the simulations 

accordingly3.  

Deb et al. (2017) show that nonlinear models are more appropriate for estimating causal effects 

when the outcome is bounded (e.g. count or binary). Researchers commonly use TWFE-

DiD/ES within nonlinear models such as Poisson or Logit, to estimate treatment effects for 

nonlinear outcomes e.g. count4 or binary outcomes5 (Taddeo et al., 2021; Wooldridge, 2023). 

However, nonlinear TWFE-DiD/ES estimators have not been thoroughly examined within 

staggered DiD/ES designs in the context of heterogeneous treatment effects. Recent alternative 

estimators have primarily focused on linear TWFE-DiD/ES models, with the exception of 

(Wooldridge, 2023).  

3. Alternative estimators 

We employ five estimators in this study: Interaction-weighted estimator (Sun & Abraham, 

2021), Inverse-Probability Weighting (IPW) estimator (Callaway & Sant’Anna, 2021), Stacked 

Regression (Cengiz et al., 2019), Extended-TWFE estimator (Wooldridge, 2021), and 

Imputation estimator (Borusyak et al., 2021). We briefly describe the approach taken by each 

estimator to identify the treatment effect (see appendix B for a more detailed description of the 

estimators).  

                                                           
3. In appendix A, we discuss the PT assumption in the case of 2 × 2 DiD for nonlinear DiD model.  

4. For count outcomes, a common approach is to assume an exponential mean function, where the nonlinear 

DiD specification can be written as: 

𝐸[𝑌𝑖𝑡] =  exp (𝛼𝑖 + 𝜃𝑡 + 𝛽𝐷𝑖𝑡) 

5. For binary outcomes, a nonlinear DiD model that respects the bounded nature of the outcome variable is 

appropriate such as logit model. The nonlinear DiD for binary outcome specification with Λ(. ) representing the 

logistic function can be written as: 

𝑌𝑖𝑡 = Λ (𝛼𝑖 + 𝜃𝑡 + 𝛽𝐷𝑖𝑡 + 𝑈𝑖𝑡) 
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3.1 Interaction-weighted estimator: 

The Interaction-weighted estimator (Sun & Abraham 2021) is a three-step approach. In the 

first step, a model is estimated that includes interactions between cohort and relative time 

indicators allowing us to estimate effects for each cohort in each relative time period using the 

last pre-intervention period as the comparison period by default. Then in the next step, a set of 

weights is calculated based on the sample share of cohorts under treatment in each relative time 

period. In the final step, the weights are then multiplied by the cohort-specific treatment effects 

to estimate the overall (i.e. for all units across all periods) or dynamic (i.e. relating to a 

particular duration of exposure) effects pre- and post- treatment.  

3.2 Inverse-probability weighting (IPW) estimator: 

The Inverse-probability weighting estimator (Callaway & Sant’Anna, 2021) is also a two-step 

approach that estimates ATT parameters.6 In the first step, ATTs for each group (defined by 

the period in which they are first treated) in each time period (𝐴𝑇𝑇(𝑔, 𝑡)) are estimated using 

separate 2x2 comparisons using the last pre-intervention period for comparison by default. In 

the second step, a weighted aggregate of 𝐴𝑇𝑇(𝑔, 𝑡) is calculated to determine overall and/or 

dynamic pre- and post- treatment effects, where the weights are equal to each cohort’s sample 

share in the relative period. 

3.3 Stacked Regression: 

In stacked regression (Cengiz et al., 2019; Deshpande and Li, 2019), cohort-specific datasets 

are created for each treatment cohort 𝑔 and only “clean controls” (i.e., observations in which 

no exposure has occurred at the relevant time point) are included. These are chosen separately 

for each treated cohort 𝑔 over a specific window from 𝑘𝑎 periods before the treatment to 𝑘𝑏 

periods after the treatment, and then each dataset is stacked together. This stacking re-centers 

                                                           
6. The authors also propose a doubly robust estimator, however this would need to be adjusted to account for a 

nonlinear outcome model. We focus on the IPW estimator here. 
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each treatment date such that the data is balanced in relative time. While this estimator does 

not suffer from bias from differential timing of treatment adoption, it might still suffer from 

bias under heterogeneous effects across calendar-time or cohorts (Gardner, 2022; Wing, 2024). 

In the stacked dataset, some observations appear multiple times, therefore, standard errors are 

clustered at the unit-cohort level.    

3.4 Extended Two-way Fixed Effect estimator: 

The two-step extended-TWFE estimator (Wooldridge, 2021) makes the standard TWFE model 

more flexible to account for heterogeneity. First, the estimator estimates an interaction 

specification with interactions between cohort and period dummies to estimate effects for each 

cohort and each period using all pre-intervention periods for the comparison group. Then, the 

overall effect or dynamic effects are obtained from the weighted-aggregate of each cohort and 

period effects, where weights are defined by the sample share of cohorts under treatment. 

Wooldridge (2021) proposes the extended-TWFE estimator focusing on linear outcome 

models, with a brief sub-section on the extension of the estimator for nonlinear outcomes. 

Wooldridge (2023) formally modifies the extended-TWFE estimator to allow for nonlinear 

outcomes. In the paper, we use the nonlinear estimator proposed in Wooldridge (2023).  

3.5 Imputation estimator: 

The imputation estimator (Borusyak et al., 2021) involves three steps. First, the potential 

outcomes for treated units are estimated from a fixed effect (unit and time fixed effect; include 

covariates if available) parametric regression using data for all units (treated and control) but 

excluding any observations in which the unit has already been exposed to the intervention. 

Second, we impute the ‘never treated’ potential outcome for each unit using the prediction from 

the model in step one and estimate the individual treatment effect for treated units in each post-

intervention period as the difference between the observed outcome and the ‘never treated’ 

group’s potential outcome. Third, calculate the weights for each unit for each period under 
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treatment, with weights corresponding to the estimation target, and estimate the weighted 

average of individual level effects based on target estimand – overall effect and dynamic effect 

in our case. 

While each of the five estimators explicitly focuses on using only the “good controls” in their 

approaches, there are differences across estimators in terms of: (i) data requirements, (ii) how 

they incorporate covariates, (iii) trade between robustness and efficiency, (iv) appropriate 

control group, and (v) the assumption of PT. For example, for the PT assumption, by default 

the interaction-weighted estimator imposes PT in the period right before treatment, the 

extended-TWFE estimator imposes PT assumption in all time periods, and the IPW estimator 

imposes PT conditional on covariates. 

4. Simulations  

We conduct simulation studies where the true ATT is known to assess the relative performance 

of standard TWFE-DiD/ES estimators and the alternative estimators outlined above in 

staggered treatment designs. We generate panel data for 1000 units for 20 time periods, which 

we refer to as ‘years’. The units are assigned into six treatment cohorts, indexed by 𝑔 

representing the periods in which they are first treated and one ‘never treated’ control group7. 

The treatment cohorts are 𝑔 ∈ {3, 6, 9, 12, 15, 18}. The corresponding number of units in each 

treated cohort are 𝑁𝑔 = {120, 70, 140, 40, 60, 170} with 400 units assigned to the control 

group8.  

We focus here on two common types of nonlinear outcome types, count and binary. The data 

generating process (DGP) satisfies the parallel-trends, no anticipation, and common shock 

assumptions. The parallel-trend holds on the transformed scale, that is, the underlying latent 

                                                           
7. In our simulations, we use only never-treated units as controls. 

8. We examined the sensitivity of the results to different choices of the size of cohorts and found that results are 

robust.  
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linear scale for the binary outcome and the log-scale for the count outcome. The true treatment 

effects (𝐴𝑇𝑇𝑔,𝑡) are held constant for count and binary outcomes in the latent scale and are 

described in section 4.4 below.  

4.1 Count outcome 

For the count outcome, the DGP for the potential outcome variable with exponential mean 

function is9: 

                                    𝑌𝑖,𝑡 =   exp(𝛼𝑖 + 𝛼𝑡 + 𝐴𝑇𝑇𝑔,𝑡𝐷𝑖,𝑡)                           (4.1) 

where. 𝑌𝑖,𝑡 is drawn from a Poisson distribution. 𝛼𝑖 and 𝛼𝑡 are unit and time fixed effects, where 

𝛼𝑖 are drawn from ~ 𝑁(0,1) + 𝜇𝑐𝑜ℎ𝑜𝑟𝑡 + 𝑒𝑖𝑡 and 𝜇𝑐𝑜ℎ𝑜𝑟𝑡 is a cohort-specific difference10 , i.e. 

each cohort is generated with different intercept, 𝑒𝑖𝑡 is the error term for each unit, 𝛼𝑡 are time 

fixed effects that do not vary by individual and are drawn from ~ 𝑁(0,1) + 0.2 ∗ 𝑡. 𝐴𝑇𝑇𝑔,𝑡 is 

true known effect for cohort 𝑔 at time 𝑡. 𝐷𝑖𝑡 is an indicator of whether unit 𝑖 is exposed to the 

intervention in period 𝑡. 𝐴𝑇𝑇𝑔,𝑡 is defined by scenarios (discussed below) i.e., how the ATT 

evolves for each cohort post-treatment.  

4.2 Binary outcome 

Following Fernández-Val and Weidner (2016), the DGP for binary outcome 𝑌𝑖,𝑡 is: 

                           𝑌𝑖,𝑡 =  1[𝛼𝑖 + 𝛼𝑡 + 𝐴𝑇𝑇𝑔,𝑡𝐷𝑖,𝑡 + 𝑈𝑖,𝑡 >  0]                 (4.2) 

where 𝛼𝑖 ~ 𝑁(0,1/16) + 𝜇𝑐𝑜ℎ𝑜𝑟𝑡 + 𝑒𝑖𝑡, 𝛼𝑡 ~ 𝑁(0,1) + 0.2 ∗ 𝑡, 𝑈𝑖,𝑡 is the logistic error term, 

and 𝐴𝑇𝑇𝑔,𝑡 is the true effect. 

                                                           
9. We have also considered non-negative and skewed fractional (continuous) outcomes using the following 

DGP: 

𝑌𝑖,𝑡 =   exp(𝛼𝑖 + 𝛼𝑡 + 𝐴𝑇𝑇𝑔,𝑡𝐷𝑖,𝑡 + 𝑒𝑖,𝑡)  

The result are similar to Count outcome. Due to space limitations, we limit our reporting to Count outcome. 

10. In appendix C1, we discuss the cohort-specific imbalance and provide the simulation parameters.   
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4.3 Modelling 

We extend the alternative estimators (with the exception of the IPW estimator (see below)) 

described above by employing fixed effect Poisson quasi-maximum likelihood estimation 

(QMLE) for count outcomes and the Conditional Logit fixed effect (CLE) for binary outcomes 

in place of the ordinary least squares (OLS) estimator used for linear models by these 

approaches. For illustration purpose, we show the bias in the TWFE-DiD and alternative 

estimators if a linear model using OLS is used to estimate effects for count and binary outcomes 

(see appendix D1). For count outcomes, Poisson QMLE has many desirable properties: the 

coefficient estimates remain consistent as long as the mean of the dependent variable is 

correctly specified independent of any assumption on the conditional variance (Wooldridge, 

1999), while standard errors are consistent even if the underlying data generating process is not 

Poisson (Gourieroux et al., 1984). While CLE is consistent and asymptotically normal for 

binary outcome (Allison, 2009). Units whose outcomes do not vary are dropped when using 

this approach, altering the population to which estimates apply11. The Poisson QMLE and CLE 

regressions provide coefficient estimates interpreted as log rate-ratio and log odds-ratio for 

count and binary outcomes. Our simulation results (section 5) are based on log rate-ratio for 

the count outcome and log odds-ratio for the binary outcome.  

The fixed effect Poisson QMLE and CLE cannot be used directly for the IPW estimator as the 

IPW estimator is not a regression-based estimator but a weighting based technique. We extend 

the IPW estimator to account for the distribution of the outcome variable for both count and 

binary outcomes (see appendix D2  for details). The estimates from the IPW estimator are on 

the same scale – log rate-ratio for the count outcome and log odds-ratio for the binary outcome 

– as alternative estimators.  

                                                           
11. In our simulations, the DGP for the binary outcome is designed such that the number of units dropped is 

minimized. 
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4.4 Scenarios for treatment effects evolution 

In this paper, a key focus is on overall and dynamic effects in the DiD and ES settings. 

Therefore, we consider different treatment effects scenarios can vary across intervention 

cohorts, time since first treatment exposure, or both, which yields four main scenarios for the 

generation of 𝐴𝑇𝑇𝑔,𝑡
12 (see appendix C2 for the treatment effect evolution by scenario): 

 Scenario A (Homogeneous treatment effects): 𝐴𝑇𝑇𝑔,𝑡 is a constant. In this scenario, 

the treatment effect is constant for all cohorts in post-treatment period.  

 Scenario B (Heterogeneity across time since exposure): 𝐴𝑇𝑇𝑔,𝑡, differs only by 

exposure duration. This type of heterogeneity can occur, for instance, if treated units 

learn about improving outcomes over the period since exposure and the effects 

compound over time. 

 Scenario C (Heterogeneity across intervention cohorts)13: 𝐴𝑇𝑇𝑔,𝑡 differ only by 

cohort (defined as a group that is exposed for the first time in the same period). For 

instance, early adopters may be those that expect larger gains from the intervention. 

Calendar effects or Selective-timing effects can be considered an example of this 

scenario of treatment effect when the target estimand is overall treatment effect or 

dynamic effect. 

 Scenario D (Heterogeneity across time since exposure and interventions cohorts):  

𝐴𝑇𝑇𝑔,𝑡 differs both by exposure duration and intervention cohorts.  

                                                           
12. In appendix C3, we provide a stylized example for each scenario of treatment effects evolution.  

13. In this scenario, the treatment effects vary across cohorts treated in different time points. For example, a time 

step can be monthly, quarterly, by-annually, or as in our simulations yearly. Therefore, the scenario captures this 

heterogeneity across cohorts treated in different time steps, in other words, captures the heterogeneity in calendar 

time. Calendar effect or Selective timing effects can be considered as an example of this scenario of treatment 

effect evolution, where the “intervention across cohorts” tries to capture all effects that could vary across time 

based on treatment adoption, assuming the effect is homogenous across duration since treatment.    
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Our analysis is based on 500 simulations for each scenario. We evaluate the performance of 

the standard TWFE-DiD and TWFE-ES model and each of the five alternative estimators 

(described in section 3) to examine the performance of each estimator based on bias and root 

mean squared error (RMSE). For the DiD model we compare the approaches according to % 

bias, while we use bias for the ES model. In the ES model, the true effect in pre-treatment 

periods is zero, making it impossible to calculate % bias in pre-treatment periods. Thus, the 

bias for each relative pre and post-treatment period in ES model is computed as: 

𝐵𝑖𝑎𝑠𝑗 = ∑ (𝛽𝑗 − 𝛽𝑗̂

𝑗=𝑙

𝑗=−𝑘

)  

where 𝑘 and 𝑙 are maximum number of leads and lags, 𝛽𝑗 is the true effect, and 𝛽𝑗̂ is the 

average estimated effect for relative period 𝑗 across 500 simulations. 

5. Simulation Results 

5.1 Count outcome 

5.1.1 Difference-in-Difference (DiD) 

Figure 1 presents the boxplots of % bias in treatment effects from the simulations for DiD 

estimand for count outcome for each scenario by estimator, while Table 1 reports the 

corresponding mean % bias and RMSE. Appendix E shows the boxplots of estimated effects 

from simulations. The effects are interpreted as log rate-ratio. We begin with the homogenous 

effect scenario (Figure 1, Panel A). Standard TWFE-DiD regression performs well and shows 

very low bias. The other estimators also perform very well for this scenario. When effects are 

heterogeneous (scenario B, C, and D; panel B, C, and D in Figure 1), standard TWFE-DiD 

performs very poorly and does not correspond to a weighted average of causal effects. 

Interaction-weighted, IPW, and extended-TWFE estimators continues to perform well with low 
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bias and low RMSE under heterogeneous effects, whereas stacked regression and Imputation 

estimator report biased estimates (see appendix E). For standard TWFE-DiD, stacked 

regression, and imputation estimator, the bias is attributable to heterogeneity in effects across 

time and cohorts, and the estimators are unable to capture this heterogeneity. While stacked 

regression estimator circumvents the issue of bad control units, however, suffers from 

nonlinearity of outcome which leads to biased estimates even in case when effects are 

heterogeneous across time (scenario B). Furthermore, Baker et al. (2022) pointed that stacked 

regression implicitly assigns the weights that may not correspond to cohort-proportional 

weights which could lead to biased estimates when effects are heterogeneous.  

5.1.2 Event-Study (ES) 

For the homogeneous effect scenario (scenario A) Figure 2 shows the ES plots of estimated 

coefficients from the simulations for count outcome for each estimator14. The point estimates 

represent the mean of the estimated coefficients from the simulations. The 95% confidence 

interval is computed using the standard deviation in the point estimates across 500 simulations. 

Therefore, the confidence interval shows the variability in point estimates across simulations. 

When discussing the event-study results, the panels in the graph represent each estimator (Panel 

A: Standard TWFE-ES; Panel B: Interaction-weighted, Panel C: IPW; Panel D: Stacked 

regression; Panel E: Extended-TWFE; Panel F: Imputation estimator)15. When there are 

homogeneous effects, (as expected) the standard TWFE-ES regression estimates the true 

dynamic path of effects with high accuracy. All the alternative estimators perform well for 

scenario A.  

When treatment effects vary across time but are the same across the length of exposure since 

treatment (scenario B), standard ES regression reports unbiased estimates. Panel A in Figure 3 

                                                           
14. For stacked regression we choose a window of -9 to 10 years for the estimation of the model.  

15. Figure E.2 in appendix E shows the mean bias for all estimators and scenarios in the event-study setting. 
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shows the results for standard ES model. Sun and Abraham (2021) showed that when the 

effects of each lag (relative year) across cohorts are the same, the TWFE estimation provides 

unbiased ATT estimates in the standard ES setting. The reason is standard ES model allows 

the effects to vary across time in relative years since treatment exposure. Figure 3 demonstrates 

that the alternative estimators perform well for this scenario and provide unbiased ATT 

estimates. 

Figure 4 presents the results for scenario C, where the treatment effects heterogeneity varies 

across intervention cohorts. Panel A shows that the standard ES estimator reports biased 

estimates for both lead and lags. This is similar to the cross-lag contamination highlighted in 

Sun and Abraham (2021) even when the parallel-trends and the no anticipation assumptions 

hold. Together with the standard TWFE-ES estimator, the stacked regression, and the 

imputation estimator also produce biased estimates (shown in Panel D and F in Figure 4). The 

ES graph for TWFE regression and stacked regression follow very similar patterns for the leads 

and lags. In stacked regression, the weights are implicitly assigned by the regression estimator, 

therefore, it produces biased estimates even controlling for bad control units. In contrast, the 

interaction-weighted, IPW, and extended-TWFE estimators produce unbiased ATT estimates 

with both pre and post treatment periods. In scenario D, when treatment effects vary across 

intervention cohorts and time, we get results similar to scenario C, where the standard ES 

model, stacked regression, and the imputation estimator give biased estimates(Panel A, D, and 

F in Figure 5). Imputation estimator produces low bias in pre-treatment period, however, the 

bias rises significantly in post-treatment periods. Interaction-weighted, IPW, and extended-

TWFE estimators provide unbiased ATT estimates with low bias (Panel B, C, and E in Figure 

5). 
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5.2 Binary outcome 

5.2.1 Difference-in-Difference (DiD) 

Table 2 reports the mean % Bias and RMSE from the simulations for DiD estimand for binary 

outcome for each scenario by estimator except for the imputation estimator16. Figure 6 presents 

the corresponding boxplots of % bias, and Figure F.1(appendix F) shows the boxplots of 

estimated coefficients from the simulations. The coefficient estimates are interpreted as log 

odds-ratio. When effects are homogenous (Panel A of Figure 6; Panel A of Figure F1.1), each 

estimator performs well with low bias and low RMSE. In the scenarios with heterogeneous 

effects (scenarios B, C, and D), interaction-weighted and extended-TWFE estimators continue 

to perform well, providing estimates with low bias and low RMSE (Table 2; Panel B, C, and 

D in Figure 6). Standard TWFE-DiD and stacked regression all report biased estimates.  

5.2.2 Event-Study (ES) 

Same as count outcome, when discussing the event-study results for binary outcome, the panels 

in the graph represent each estimator (Panel A: Standard TWFE-ES; Panel B: Interaction-

weighted, Panel C: IPW; Panel D: Stacked regression; Panel E: Extended-TWFE)17. When the 

treatment effects are homogeneous (scenario A) or vary only across time (scenario B), the 

standard ES model as well as other estimators perform well and produce estimates with low 

bias for pre- and post-intervention periods. The ES results presented in Figures 7 and 8 show 

the results for each estimator for all leads and lags. For scenario C (heterogeneity across cohort; 

results shown in Figure 9), the interaction-weighted, IPW, and extended-TWFE estimators 

provide unbiased estimates. However, for this scenario, the other methods – the standard 

TWFE-ES and stacked regression – perform poorly with high bias produced in both pre and 

                                                           
16. Currently we are not aware of any extension of the imputation estimator for use with binary outcomes. 

Therefore, in our simulations for binary outcomes, we consider only the standard TWFE-DID/ES model, 

interaction-weighted, IPW, stacked regression, and extended-TWFE estimators.  

17. Figure F.2 in appendix F shows the mean bias for all estimators and scenarios in the event-study setting.  
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post treatment periods. In scenario D (heterogeneity across cohort and time), again only the 

interaction-weighted, IPW, and extended-TWFE estimators provide estimates with low bias 

(see Panel B and E in Figure 10). The other methods suffer from the same problems as in 

scenario C (heterogeneity across cohort), and give biased estimates (Panel A, C, and D in 

Figure 10). Overall, for binary outcome, interaction-weighted, IPW, and extended-TWFE are 

robust to the different scenarios of treatment effect, similar to the results for count outcome. 

6. Case Study: Empirical application 

To provide an illustration of the results presented above we now present an empirical 

application. We revisit Yadav et al. (2023)’s (YMO hereafter) empirical analysis that examines 

how co-authorship with a co-located star scientist affects the co-author's productivity. YMO 

first implements coarsened exact matching to construct a treated and control group that are 

comparable in terms of observed characteristics. Then, they employ standard TWFE-ES 

regression using Poisson QMLE on the matched treated and control group to find that, 

following coauthorship with a star scientist, a co-author’s research productivity increases both 

including and excluding the output of the star. The authors use unbalanced panel for the main 

analysis. However, our simulations are based on balanced panel. Therefore, for the application 

to be parallel with our simulations, we focus on the balanced panel results represented in figure 

3 in YMO. The authors presented the results for output including and excluding star’s output. 

For parsimony, our replication focuses only on the results including the star’s output.  

We use the data provided by YMO, which contains individual authors-level data for 2,458 

authors from 1996 to 2017. Forming a co-authorship relationship with a star is used as the 

treatment in the study. All authors who co-authored with the star for the first time in the same 

year belong to a cohort. YMO has used the treatment start time since 1996. In our replication, 

we use treatment start time from 1997 onwards, as most of the alternative estimators drop the 
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observations for the treated cohort for whom no pre-treatment observations are available. 

Therefore, to be consistent across the estimators we use the treatment start time from 1997. In 

total we have 21 cohorts, 𝑔 = {1997,1998,…,2017}.   

6.1 Count outcome 

YMO’s identification strategy relies on staggered implementation of the treatment (co-

authorship with the star) from 1997 to 2017. They implemented a DiD model with staggered 

exposure: 

𝑌𝑖𝑡 =  𝑒𝑥𝑝(𝛼 + 𝛽1𝑠𝑡𝑎𝑟𝑖𝑡 + 𝛿𝑡 + 𝜇𝑖 + 𝜖𝑖𝑡  )           (6.1) 

and a standard ES model specified as: 

𝑌𝑖𝑡 =  𝑒𝑥𝑝(𝛼 + 𝛽≤−4𝑠𝑡𝑎𝑟𝑖,−4 + ∑ 𝛽𝑗𝑠𝑡𝑎𝑟𝑖,𝑗

−2

𝑗= −3

+ ∑ 𝛽𝑗𝑠𝑡𝑎𝑟𝑖,𝑗

3

𝑗= 0

+ 𝛽≥4𝑠𝑡𝑎𝑟𝑖,4 + 𝛿𝑡 + 𝜇𝑖

+ 𝜖𝑖𝑡  )           (6.2) 

where 𝑌𝑖,𝑡 is the measure of productivity (i.e. field normalized citations) for author 𝑖 in year 𝑡. 

𝛿𝑡 is a vector of time-fixed effects, 𝜇𝑖 is the unit-fixed effects and 𝜖𝑖𝑡 is the idiosyncratic error 

term. The variable 𝑠𝑡𝑎𝑟𝑖,𝑗  is a star co-authorship indicator variable equal to 1 if, as of year 𝑡, 

an author co-authored with a star 𝑗 years ago. Equation (6.2) uses 3 leads and 3 lags, with 

periods more than 3 preceding (proceeding) co-authorship, the authors combine the indicators 

into a single indicator, 𝑠𝑡𝑎𝑟𝑖,−4 (𝑠𝑡𝑎𝑟𝑖,+4). YMO also implemented extended-TWFE estimator 

in their analysis, imposing PT in all pre-treatment periods until the last time period. Thus, we 

remain consistent with the original paper for extended-TWFE replication.     

The estimated effects, using Poisson QMLE, of star’s co-authorship on co-author’s 

productivity using different estimators are shown in Figure 11 (DiD model) and Figure 12 (ES 

model). TWFE-DiD shows a positive effect of star co-authorship. While alternative estimators 
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produce qualitatively similar results, we find moderate differences in the magnitude of effects 

across the estimators. The interaction-weighted, IPW, and extended-TWFE (most accurate 

estimators in simulation) estimates show that, after accounting for heterogeneity in treatment 

effects, the treatment effect is slightly lower than the TWFE-DiD estimates. TWFE-ES graph 

suggests that following a co-authorship with a star, co-authors experience a statistically 

significant increase in their quality-adjusted productivity. Alternative estimators also show 

similar qualitative trend in the results, both in pre and post treatment periods. Our replication 

complements YMO and suggests that the co-authoring with star scientist positively affects the 

co-author’s productivity, however, it indicates the presence of heterogeneous effects across 

time and cohorts. 

6.2 Binary Outcome 

YMO do not use a binary outcome in their analysis. However, for empirical illustration, we use 

YMO’s dependent variable, field-normalized citations, to create a binary outcome. We took 

log of the dependent variable, then standardise, and assign a value 1 for author 𝑖 in year 𝑡 if the 

field-normalized citations are above zero (a single median that is defined across all 

observations), and 0 otherwise. The DiD and ES models are specified as: 

𝑌𝑖𝑡 =  Λ(𝛼 + 𝛽1𝑠𝑡𝑎𝑟𝑖𝑡 + 𝛿𝑡 + 𝜇𝑖 + 𝑈𝑖𝑡  )           (6.3) 

𝑌𝑖𝑡 = Λ [𝛼 + 𝛽≤−4𝑠𝑡𝑎𝑟𝑖,−4 + ∑ 𝛽𝑗𝑠𝑡𝑎𝑟𝑖,𝑗

−2

𝑗= −3

+ ∑ 𝛽𝑗𝑠𝑡𝑎𝑟𝑖,𝑗

3

𝑗= 0

+ 𝛽≥4𝑠𝑡𝑎𝑟𝑖,4 + 𝛿𝑡 + 𝜇𝑖

+ 𝑈𝑖𝑡]          (6.4) 

where Λ(. ) is the logistic function, 𝑌𝑖,𝑡 is the binary outcome, and other parameters are same as 

equation (6.1).  
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Figure 13 and 14 shows the results for DiD and ES models using Conditional Logit fixed effect 

estimator. The TWFE-DiD and the alternative estimators indicate a positive effect from star 

co-authorship on an author’s productivity, however, we find differences in the magnitude of 

effects across the estimators. Interaction-weighted, IPW, and extended-TWFE estimates are 

lower than the TWFE-DiD estimates, indicating the presence of heterogeneous effects. The 

Event-study graph in Figure 14 presents the dynamic results estimated by TWFE-ES and the 

alternative estimators, and suggests a similar qualitative trend in the results, both in pre and 

post treatment periods. Both the DiD and ES results indicate the presence of heterogeneous 

effects in overall and pre and post treatment periods.  

7. Conclusion 

DiD and ES designs are the most popular approaches in the literature to identify the effect of a 

treatment/intervention on a treated group (Lee & Lee, 2021). Effects in these designs are 

commonly estimated using two-way fixed effects models. More recent literature suggests that 

standard TWFE-DiD/ES regressions are susceptible to producing biases under staggered 

treatment adoption and HTEs (Baker et al., 2022). While a variety of strategies (estimators) 

have been proposed to circumvent the bias arising in standard TWFE-DiD/ES regression, the 

focus of these estimators has been primarily on a linear outcome setting with very few 

exceptions. Thus, there exists a gap in the literature on the performance of these recent 

estimators in a nonlinear setting. We aim to contribute to this gap in the literature by focusing 

on the performance of these recent estimators in a nonlinear outcome setting (count and binary 

outcomes).     

We examine, using simulations, the relative performance of the standard TWFE-DiD/ES model 

and five alternative estimators (Interaction-Weighted, IPW, Stacked Regression, Extended-

TWFE, and Imputation Estimator) under different scenarios of HTEs evolution for count and 
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binary outcomes. Our simulation results indicate that the negative weighting problems arising 

from bad control units persist in the standard TWFE-DiD/ES model with staggered 

interventions and heterogeneous effects for count and binary outcomes. To our knowledge, this 

study is the first to highlight this finding in the case of nonlinear outcomes18. Our findings 

suggest that applied researchers interested in staggered DiD/ES model using count or binary 

outcomes should be careful while using standard TWFE-DiD/ES estimators when they suspect 

the presence of treatment effect heterogeneity. These approaches could lead to biased estimates 

of the underlying treatment effects and could therefore lead to erroneous conclusions regarding 

the effectiveness of an intervention.  

We, additionally, extend the alternative estimators that are proposed by the recent literature to 

circumvent the limitations in standard ES model to account for non-linearity in outcomes and 

examine their relative performance. We use Poisson QMLE for count outcome and Conditional 

Logit fixed effect estimator for binary outcome for each estimator except for the IPW estimator, 

for which we have shown the extension for count and binary outcomes. The simulation results 

show that estimators such as the stacked regression and the imputation estimator that produce 

unbiased estimates for linear models (continuous outcome) are biased and fail to recover the 

true treatment effect under non-linearity in outcome in the presence of HTEs. Stacked 

regression produces biased estimates for all scenarios of heterogeneous effect for the DiD 

model and for scenarios C and D of treatment effect evolution for the ES model, with both 

count and binary outcomes19. Interaction-weighted, IPW, and Extended-TWFE estimators are 

found to be most robust in producing unbiased estimates when ‘extended straight of the shelf’ 

under staggered interventions for each scenario of heterogeneous treatment effects. Finally, for 

                                                           
18. Studies such as Baker et al (2022), Roth et el., (2023), Borosyak et al (2021), Barrios (2021), Linder & 

McConnell (2022) uses simulations to show the bias arising from staggered treatment and heterogeneous effects, 

however, the focus in these paper is on linear (continuous) outcome models.   

19. Stacked Regression can produce biased estimates in the presence of HTEs even in the case of linear outcome 

(Gardner, 2022).    
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empirical illustration, we revisited YMO (Yadav et al., 2023), where we applied standard 

TWFE-ES and the alternative estimators to their data. The results from the alternative 

estimators are qualitatively similar when compared with the results from the original analysis. 

This could be due to comparable treated and control groups obtained from matching before 

implementing Poisson QMLE, indicating they strategically obtained similar groups and 

accounted for outcome distribution carefully in the regression or due to effects being more 

homogenous than in our simulation study, however, there were moderate differences in the 

magnitude of effects across the estimators20.  

Overall, our findings reveal that not all alternative estimators that circumvent the limitations of 

standard TWFE-ES model in linear models recover the true ATT in the case of nonlinear 

outcome models. In particular, if used straight of the shelf without appropriately accounting 

for the nature of the dependent variable bias can ensue. Based on these findings, we 

recommend, while being careful that the extensions employed in this study were not proposed 

by the original papers cited and have not had their properties formally studied (expect 

extended-TWFE by Wooldridge (2023)), researchers employ the interaction-weighted, IPW, 

or extended-TWFE estimator (or modify the alternative methods before use to acknowledge 

non-linearities). Both, interaction-weighted and extended-TWFE, of estimators are regression 

based and easy to implement, even for nonlinear outcomes, whereas IPW estimator is a 

weighting-based technique, that can be extended easily to account for non-linearity. The 

estimators do differ in some key factors such as interaction-weighted estimator impose PT 

assumption from the last pre-intervention period until the last period, the extended-TWFE 

imposes a PT assumption in all pre-intervention period until the last period, and IPW imposes 

a PT assumption conditional on covariates. We recommend that a researcher employ the 

                                                           
20. Chiu et al (2023) in a replication analysis find similar results to our study. The authors replicated 37 studies 

using TWFE estimator and six alternative estimators for linear outcome model and find that, in general, results 

from the alternative estimators are qualitatively similar to original study. 
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estimator most suitable for their empirical analysis based on the setting under investigation. 

Furthermore in Table G.1 (appendix G), we provide a brief comparison of the estimators 

examined in this paper. 

Our study examined the performance of alternative estimators (initially developed for 

continuous outcome and linear model) for count and binary outcomes under staggered adoption 

and HTEs in the context of DiD and ES design. We believe the results provided in our paper 

can improve the credibility of staggered DiD/ES studies with nonlinear outcomes. However, a 

formal study of the properties of the extensions of the original five alternative estimators 

presents an interesting avenue for future research. Moreover, this study is focused on a 

balanced panel where PT and NA assumptions hold. Often, researchers encounter data with 

unbalanced panel, time variant/invariant covariates. In future work, we will extend the analysis 

of the performance of these alternative estimators to more complicated cases, such as different 

potential violation of PT assumption, fundamentally different control and treated group, 

covariates. 
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                                          Panel A                                                                 Panel B 

       

                                         Panel C                                                         Panel D 

       

Figure 1: Boxplots of bias % in treatment effects for count outcome 
Note: IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator 

 

Table 1: Mean % Bias and RMSE for DID model for Count outcome 
 Mean % Bias 

Scenario  TWFE-DID IW IPW SR ETWFE IE 

Homogeneous effect -0.080 -0.193 -0.193 -0.040 -0.193 1.024 

Heterogeneity across 

time 92.094 -0.613 -0.613 25.372 -0.613 -24.297 
Heterogeneity across 

cohorts  -81.584 -0.420 -0.420 -59.445 -0.420 -7.236 

Heterogeneity across 

time and cohorts 66.385 -0.355 -0.355 37.634 -0.355 -7.238 

       

 Root Mean Squared Error (RMSE) 

Scenario  TWFE-DID IW IPW SR ETWFE IE 

Homogeneous effect 0.045 0.052 0.052 0.044 0.052 0.046 

Heterogeneity across 

time 0.772 0.062 0.062 0.164 0.062 0.217 
Heterogeneity across 

cohorts  0.730 0.045 0.045 0.585 0.045 0.107 
Heterogeneity across 

time and cohorts 0.800 0.061 0.061 0.400 0.061 0.103 

Note: IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator 
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                                        Panel A                                                               Panel B 

          

                                        Panel C                                                                Panel D 

         

                                        Panel E                                                                Panel F 

         

Figure 2: Event-study graphs from simulations for Count outcome for Scenario A (Homogeneous 

effect) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulations. We target 95% confidence interval (CI), therefore, the 

confidence interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). 
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                                    Panel A                                                                    Panel B 

          

                                    Panel C                                                                   Panel D 

         

                                    Panel E                                                                    Panel F 

          

Figure 3: Event-study graphs for simulations for Count outcome for Scenario B (Heterogeneity since 

exposure) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). 
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                                        Panel A                                                                Panel B 

          

                                        Panel C                                                                Panel D 

         

                                        Panel E                                                                Panel F 

         

Figure 4: Event-study graphs for simulations for Count outcome for Scenario C (Heterogeneity 

across cohorts) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). 
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                                       Panel A                                                                 Panel B 

          

                                        Panel C                                                                Panel D 

          

                                        Panel E                                                                Panel F 

         

Figure 5: Event-study graphs for simulations for Count outcome for Scenario D (Heterogeneity 

across cohorts and time since exposure) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). 
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                                        Panel A                                                                     Panel B 

        

                                        Panel C                                                                     Panel D 

       

Figure 6: Boxplots of % bias in treatment effects for Binary outcome 
Note: IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator 

 

Table 2: Mean % Bias and RMSE for DID model for Binary outcome 

 Mean % Bias 

Scenario  TWFE-DID IW IPW SR ETWFE 

Homogeneous effect 0.558 0.237 0.380 0.566 0.237 

Heterogeneity across 

time 52.130 0.898 1.050 10.290 0.898 
Heterogeneity across 

cohorts  -35.135 1.152 1.285 -17.231 1.152 
Heterogeneity across 

time and cohorts 30.495 -0.078 0.099 13.622 -0.078 

      

 Root Mean Squared Error (RMSE) 

Scenario  TWFE-DID IW IPW SR ETWFE 

Homogeneous effect 0.054 0.102 0.101 0.058 0.102 

Heterogeneity across 

time 0.377 0.099 0.098 0.076 0.099 
Heterogeneity across 

cohorts  0.274 0.099 0.098 0.159 0.099 
Heterogeneity across 

time and cohorts 0.349 0.102 0.100 0.146 0.102 

Note: IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator   
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                                        Panel A                                                                Panel B 

          

                                        Panel C                                                                Panel D 

         

                                        Panel E                                                                 

          

Figure 7: Event-study graphs for simulations for Binary outcome for Scenario A (Homogeneous 

effect) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). Currently there is no 

implementation of IE estimator extension for binary outcome. 
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                                        Panel C                                                                Panel D 

         

                                        Panel E                                                                 

          

Figure 8: Event-study graphs for simulations for Binary outcome for Scenario B (Heterogeneity since 

exposure) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). Currently there is no 

implementation of IE estimator extension for binary outcome. 
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                                        Panel A                                                                Panel B 

          

                                        Panel C                                                                Panel D 

          

                                        Panel E                                                                 

      

Figure 9: Event-study graphs from simulations for Binary outcome for Scenario C (Heterogeneity 

across cohorts) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). Currently there is no 

implementation of IE estimator extension for binary outcome. 
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                                        Panel C                                                               Panel D 
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Figure 10: Event-study graphs for simulations for Binary outcome for Scenario D (Heterogeneity 

across cohorts and time since exposure) 
Note. The point estimate (shown on y-axis) is the average of all point estimates from the simulations. The closer the point estimate 

is to the true effect evolution (true effect shown in grey), the lower the bias and vice-a-versa. The confidence intervals are generate 

using the standard deviations in points estimates from simulation. We target 95% confidence interval (CI), therefore, the confidence 

interval is generated by standard deviation (sd) in point estimate (e) across simulations (CI = e ± 1.96*sd). Currently there is no 

implementation of IE estimator extension for binary outcome. 
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Figure 11: YMO: Standard TWFE-DiD and alternative estimators DiD estimates plot for Count 

Outcome  
Note: The figure plots standard TWFE-DiD and alternative estimators coefficient estimates and 95% confidence 

interval. For standard TWFE-DiD, Interaction weighted, Stacked Regression, and Extended-TWFE, the confidence 

intervals are generated through regression, whereas for Inverse probability weighting and Imputation estimator the 

confidence interval are obtained through bootstrapping.  

 

Figure 12: YMO: Standard TWFE-ES and alternative estimators event-study plot for Count 

Outcome 
Note: The figure plots standard TWFE-ES and alternative estimators coefficient estimates and 95% confidence 

interval for relative-time periods 3 years before the treatment to 3 years after the treatment. Except IPW, all other 

estimators are implemented using Poisson QMLE to estimate the effect. For standard TWFE-ES, Interaction 

weighted, Stacked Regression, and Extended-TWFE, the confidence intervals are generated through regression, 

whereas for Inverse probability weighting and Imputation estimator the confidence interval are obtained through 

bootstrapping.  
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Figure 13: YMO: Standard TWFE-DiD and alternative estimators DiD estimates plot for Binary 

Outcome 
Note: The figure plots standard TWFE-DiD and alternative estimators coefficient estimates and 95% confidence 

interval. For standard TWFE-DiD, Interaction weighted, Stacked Regression, and Extended-TWFE, the confidence 

intervals are generated through regression, whereas for Inverse probability weighting and Imputation estimator the 

confidence interval are obtained through bootstrapping.  

 

Figure 14: YMO: Standard TWFE-ES and alternative estimators event-study plot for Binary 

Outcome 
Note: The figure plots standard TWFE-ES and alternative estimators coefficient estimates and 95% confidence 

interval for relative-time periods 3 years before the treatment to 3 years after the treatment. Except IPW, all other 

estimators are implemented using Poisson QMLE to estimate the effect. For standard TWFE-ES, Interaction 

weighted, Stacked Regression, and Extended-TWFE, the confidence intervals are generated through regression, 

whereas for Inverse probability weighting and Imputation estimator the confidence interval are obtained through 

bootstrapping. 
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Appendix 

Appendix A: Parallel trend assumption for nonlinear DiD  

To obtain PT assumption for nonlinear DID models, we assume a strictly increasing, 

continuously differentiable function 𝐺(∙) and can state the assumption in two parts, 

Ε[𝑌1(0)|𝐷] =  𝐺(𝛼 + 𝛿𝐷) 

Ε[𝑌2(0)|𝐷] =  𝐺(𝛼 + 𝛿𝐷 + 𝛾) 

where the key restriction is that 𝐺(∙) is monotonically increasing. Combining the above two 

gives: 

𝐺−1(Ε[𝑌2(0)|𝐷]) − 𝐺−1(Ε[𝑌1(0)|𝐷]) = 𝛾 

where the PT assumption applies to a nonlinear transformation of the means. The linear PT 

assumption holds true for the indices contained with the function 𝐺(∙) (This type of assumption 

is more in line with the one discussed in Puhani (2012)), for example, the linear PT assumption 

holds for the underlying latent variable in case of binary dependent variable but fails generally 

for Ε[𝑌𝑡(0)|𝐷] (Wooldridge, 2023). Our choice of 𝐺(∙) affects how we estimate the ATT, 𝜏2 

(Barkowski (2021) provide a clear explanation of how the choice of PT assumption based on 

scale can impact the final inference of the results). 

Using the conditional expectations for nonlinear model, the counterfactual outcome is defined 

as: 

Ε[𝑌2(0)|𝐷 = 1] = 𝐺(𝛼 + 𝛿 + 𝛾)                   

Therefore, the true ATT, 𝜏2 = Ε[𝑌2(1) − 𝑌2(0)| 𝐷 = 1] is identified in regression form as 

  𝜏2 = 𝐺(𝛼 + 𝛿 + 𝛾 + 𝛽) − 𝐺(𝛼 + 𝛿 + 𝛾)                   
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Appendix B: Alternative estimators 

We provide a discussion on the alternative estimation techniques that have been proposed to deal with 

estimation in staggered DiD/ES designs with HTEs: 

B.1. Interaction-weighted estimator - Sun and Abraham (2021) 

Sun and Abraham (2021) examined heterogeneous effects in the context of ES design and staggered 

treatment timing. To examine the dynamic effect in ES, a researcher includes leads and lags of 

treatment. The author showed in ES, with staggered treatment timing, the TWFE estimates of 

coefficients on lead and lag indicators will be contaminated by treatment effects from other relative 

periods in the presence of heterogeneous effects. The key focus of the interaction-weighted estimator is 

the “Cohort-specific average treatment effect on treated” 𝑙 periods away from the initial treatment for 

the cohorts first treated at event-time 𝑒, (𝐶𝐴𝑇𝑇𝑒,𝑙). The theoretical finding in their paper is that TWFE 

coefficients on lead and lag are biased because coefficients of 𝑙 periods relative to treatment can be seen 

as linear combination non-convex average of 𝐶𝐴𝑇𝑇 of that period and 𝐶𝐴𝑇𝑇 from other periods. They 

proposed a three-step estimation strategy that is robust to treatment effect heterogeneity and calculates 

weighted average of 𝐶𝐴𝑇𝑇𝑒,𝑙.  

Sun and Abraham (2021) proposed an estimation technique to estimate weighted average 𝐶𝐴𝑇𝑇𝑒,𝑙 using 

an interacted specification that interacts with relative time indicators 𝐷𝑖,𝑡
𝑙  and cohort indicators 1. {𝐸𝑖 =

𝑒}, which they labelled as “interaction-weighted” estimator. To estimate 𝐶𝐴𝑇𝑇𝑒,𝑙 interact relative time 

dummies with group dummies as follows: 

                       𝑌𝑖,𝑡 = 𝛼𝑖 + 𝜆𝑡 + ∑ ∑ 𝛿𝑒,𝑙  (1. {𝐸𝑖 = 𝑒}.𝐷𝑖,𝑡
𝑙  ) + 𝜀𝑖,𝑡  

𝑙 ≠ −1𝑒

        (𝐵1.1) 

where 𝛿𝑒,𝑙 is the DiD estimator for 𝐶𝐴𝑇𝑇𝑒,𝑙. The units used as controls are those units that are never 

treated or the last treated group21 (this group is then never used as a treated group). The weights are 

defined equal to each cohort’s sample share in the relative period 𝑙. The interaction-weighted estimator 

is formed by taking weighted average over all 𝐶𝐴𝑇𝑇 from equation (B1.1) multiplied by the weights 

for relevant cohort and relative period. The interaction-weighted estimator is given by: 

                         𝜐̂𝑔 = 
1

|𝑔|
 ∑ ∑𝛿𝑒,𝑙  𝑃𝑟̂(𝐸𝑖 = 𝑒|𝐸𝑖  ∈ [−𝑙, 𝑇 − 𝑙]) 

𝑒𝑙 ∈𝑔

                 (𝐵1.2) 

where 𝛿𝑒,𝑙 is estimated from equation (B1.1) and 𝑃𝑟̂(𝐸𝑖 = 𝑒|𝐸𝑖  ∈ [−𝑙, 𝑇 − 𝑙]) is the weights equal to 

share of each cohort 𝑒 in relative period 𝑙. 𝜐̂𝑔 is similar to 𝜃𝑒𝑠(𝑒) in interpretation, and is a parameter 

                                                           
21. Sun and Abraham (2021) argues that when the last treated group is used as control then the researcher needs 

to exclude more than one relative period (possibly the farthest lead) to avoid multi-collinearity issues.   
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of interest in many applied studies. Thus, we can create standard event-study plots across relative 

periods 𝑙 to understand the dynamic effect. 

B.2.  Inverse Probability Weighting (IPW) Estimator - Callaway & Sant’Anna (2021) 

Callaway & Sant’Anna (2021) proposed an outcome regression estimator, IPW estimator, and Doubly-

Robust estimator. In this paper, we focus on the IPW estimator. IPW estimator is a way to deal with 

weighting problems of TWFE regression and estimate treatment effect parameters using DiD with 

multiple time periods, variation in treatment timing, and assuming parallel trends hold only after 

conditional on time-invariant covariates. The key concept in the estimator is the “group-time average 

treatment on the treated”, 𝐴𝑇𝑇(𝑔, 𝑡). 𝐴𝑇𝑇(𝑔, 𝑡) is a unique 𝐴𝑇𝑇 for each cohort of units treated at the 

same time point 𝑔, and time period 𝑡. The authors rely on a non-parametric approach to develop their 

estimator and propose a two-step estimation strategy with a bootstrap procedure to conduct valid 

inference for 𝐴𝑇𝑇(𝑔, 𝑡). IPW estimator (under the assumptions) identifies 𝐴𝑇𝑇(𝑔, 𝑡) non-

parametrically as: 

𝐴𝑇𝑇(𝑔, 𝑡) =  𝔼 

[
 
 
 
 

(

 
 𝐺𝑔

𝔼[𝐺𝑔]
− 

𝑝𝑔(𝑋)𝐶

1 − 𝑝𝑔(𝑋)

𝔼 [
𝑝𝑔(𝑋)𝐶

1 − 𝑝𝑔(𝑋)
]
)

 
 

 (𝑌𝑡 − 𝑌𝑔−1)

]
 
 
 
 

         (𝐵2.1)  

where 𝑝𝑔(𝑋)𝐶 is the propensity score conditional on covariates 𝑋 and being a unit from treated group 

𝑔 or control group 𝐶. The 𝑝𝑔(𝑋)𝐶, normalized to one, determines the weights. 𝐺𝑔 is the binary variable 

equal to one for units treated at time 𝑔, and 𝐶 is the binary variable for control group units. 𝐴𝑇𝑇(𝑔, 𝑡) 

is simply the weighted average of the “long-difference” between the outcome of treated group 𝑔 and 

control group 𝐶. The intuition of this approach is to take observations from control group 𝐶 and treated 

group 𝑔, and drop observations from other groups. Then assign higher weights to observations in control 

group that have characteristics analogous to treated group 𝑔, and low weights to observations in control 

group that are different. The reweighting ensures that control and treatment groups are balanced 

conditional on covariates22. The author also provides a simple way to aggregate 𝐴𝑇𝑇(𝑔, 𝑡) into simpler 

parameters such as by relative time, by calendar time, etc.  

We focus on aggregation by overall ATT and  relative time, i.e., ES, as the paper focuses on DiD and 

ES design. The author provides a simple way to aggregate 𝐴𝑇𝑇(𝑔, 𝑡) across cohorts and time: 

𝜃𝑂 = 
1

𝐾
 ∑ ∑1. {𝑡 ≥ 𝑔}𝐴𝑇𝑇(𝑔, 𝑡) 𝑃(𝐺 = 𝑔|𝐺 ≤ 𝑇) 

𝑇

𝑡=2

 

𝑔∈𝐺

        (𝐵2.2) 

                                                           
22. The IPW estimator allows to choose control units between the two: “never-treated units” or “not-yet treated 

units”.  
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and across different lengths of exposure to treatment as: 

       𝜃𝑒𝑠(𝑒) =   ∑ 1. {𝑔 + 𝑒 ≤ 𝑇} 𝑃(𝐺 = 𝑔|𝐺 + 𝑒 ≤ 𝑇) 𝐴𝑇𝑇(𝑔, 𝑔 + 𝑒)

𝑔∈𝐺

        (𝐵2.3) 

𝜃𝑂 is the overall effect of participating in the treatment and 𝜃𝑒𝑠(𝑒) is the average effect of participating 

in the treatment for 𝑒 time periods since the treatment was implemented across all groups that have ever 

been observed to have participated in the treatment for exactly 𝑒 time periods, where 𝑒 is event time 

i.e., time from the treatment. 𝑇 is the last time in the data. 𝜃𝑒𝑠(𝑒) is the target parameter in many studies 

and can be used to generate standard ES plots across different 𝑒’s to view dynamic treatment effects. 

B.3. Stacked regression Estimator – Cengiz et al. (2019); Deshpande & Li (2019) 

Stacked Regression estimate treatment effects with staggered treatment timing and heterogeneity in 

effects. Cengiz et al., (2019) employed stacked regression to examine the effect of minimum wages on 

low-wage jobs. The author use stacked regressions as a robustness check against the problems with 

aggregating DiD into a single parameter. Stacked regression can easily be extended to ES.  

In stacked regression, a new event-specific dataset is created for each treated cohort 𝑔. The dataset 

contains the observations for that cohort 𝑔 over a specific window from 𝑘𝑎 to 𝑘𝑏, where 𝑘𝑎 periods 

before and 𝑘𝑏 periods after the treatment is administered, along with “clean controls” (units that did not 

receive treatment during the estimation window, 𝑘𝑎 to 𝑘𝑏)23. Choosing the length of 𝑘𝑎 and 𝑘𝑏 is 

specific to research design. Then assign a specific event indicator 𝑤𝑔 for each event time. We then stack 

each event-specific dataset and regress the outcome on treatment using the following DiD and ES 

specification: 

𝑌𝑖𝑡𝑔 = 𝛼𝑖𝑔 + 𝜆𝑡𝑔 + 𝛽𝐷𝑖𝑡𝑔 + 𝜀𝑖𝑡𝑔        (𝐵3.1) 

𝑌𝑖𝑡𝑔 = 𝛼𝑖𝑔 + 𝜆𝑡𝑔 + ∑ 𝛽𝑗

−2

𝑗= −𝑘𝑎

(1. {𝑡 − 𝑔𝑖 = 𝑗}) + ∑ 𝛽𝑗

𝑘𝑏

𝑗= 0

(1. {𝑡 − 𝑔𝑖 = 𝑗}) + 𝜀𝑖𝑡𝑔        (𝐵3.2)  

Cengiz et al. (2019) noted that stacked regression is an attractive alternative approach to standard TWFE 

as it incorporates more strict criteria to create the control group. In stacked regression, we need to 

saturate dataset-specific unit and time fixed effects. This is the only difference between standard TWFE 

and stacked regression functional forms. However, stacked regression gives freedom to choose if we 

want multiple copies of same observation. We account for this fact by clustering standard errors at unit-

group level to make sensible interpretations. The stacking creates a setting where all units are treated 

                                                           
23. 𝑘𝑎 and 𝑘𝑏 are the length of pre and post event window. For instance, 𝑘𝑎 is the number of years before the 

treatment that is required for estimation, and 𝑘𝑏 is the number of years after the treatment that is required for 

estimation.  
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simultaneously, thus prevents the past treated units acts as control. This is more robust to problems 

arising in the presence of heterogeneous effects in staggered treatment design. Similar to other 

estimators, we can create a lead/lag ES plot for relative time periods. 

B.4. Extended-TWFE (ETWFE) estimator – Wooldridge (2021) 

Wooldridge (2021) proposed an Extended-TWFE estimator to estimate cohort-period specific treatment 

effects, 𝜏𝑟𝑠, under staggered design in the presence of heterogeneous effects. He pointed out that the 

problem with TWFE is that the model is too restrictive. If we explicitly allow treatment effects to vary 

across cohorts and periods in the regression, the FE estimator captures the treatment effect heterogeneity 

across cohorts and periods. Wooldridge (2021) shows the equivalence between TWFE and Two-Way 

Mundlak (TWM) regression and argues that various estimators for policy intervention analysis can be 

computed using TWFE or pooled ordinary least square (POLS) regression. Wooldridge (2021) 

proposed TWM and TWFE regression that is robust to treatment effect heterogeneity, and estimates 𝜏𝑟𝑠 

– both regression approaches are equivalent. 

The proposed estimation technique in Wooldridge (2021) uses an interacted specification with 

interaction between cohort and period dummies to estimate 𝜏𝑟𝑠, which he called “Extended-TWFE” 

(ETWFE) estimator (if a researcher uses fixed effect estimator) or “TWM” estimator (if a researcher 

uses POLS estimator). The effects using the TWFE estimator is estimated by24: 

                          𝑌𝑖,𝑡 = 𝛼𝑖 + 𝑓𝑡 + ∑ ∑𝜏𝑟𝑠

𝑇

𝑠=𝑟

𝑇

𝑟=𝑞

 (𝑤𝑖𝑡 ⋅ 𝑑𝑖𝑟 ⋅ 𝑓𝑠𝑡) + 𝜀𝑖𝑡                (𝐵4.1) 

where 𝜏𝑟𝑠 is the cohort-period specific effect. 𝜏𝑟𝑠 captures the heterogeneity in effect for unit 𝑖 in cohort 

𝑟 for period 𝑠. 𝑤𝑖𝑡 is the treatment indicator variable that switches to one when the treatment is 

administered, 𝑑𝑖𝑟 and 𝑓𝑠𝑡 are the cohort and time dummy, and 𝛼𝑖 and 𝑓𝑡 are unit and time fixed effect. 

Wooldridge (2021) encourages to use TWFE estimator over POLS due to its advantages for the 

unbalanced panel, as TWFE allows correlation between sample selection and unobserved heterogeneity. 

We can also include covariates in the regression as controls. Also, incorporating covariates interaction 

can capture the moderating effect of the covariate on sub-population. 𝜏𝑟𝑠 can then be aggregated based 

on the researcher’s main question, such as cohort effects, exposure effects, etc., to get the aggregate 

effect of the treatment. We aggregate the effect by exposure to treatment to obtain dynamic treatment 

effects (as this paper focuses on ES design).  

                                                           
24. The TWM estimator is: 

𝑌𝑖,𝑡 =  𝜂 + ∑ 𝜆𝑟𝑑𝑖𝑟

𝑇

𝑟=𝑞

+ ∑ 𝜃𝑠𝑓𝑠𝑡

𝑇

𝑠=2

+ ∑ ∑𝜏𝑟𝑠

𝑇

𝑠=𝑟

𝑇

𝑟=𝑞

 (𝑤𝑖𝑡 ⋅ 𝑑𝑖𝑟 ⋅ 𝑓𝑠𝑡) + 𝜀𝑖𝑡   

We explicitly include time(𝑓𝑠𝑡) and cohort (𝑑𝑖𝑟) dummies and estimate 𝜏𝑟𝑠 using the POLS regression. 
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B.5. Imputation estimator (IE) – Borusyak et al. (2021) 

Borusyak et al. (2021) proposed the imputation estimator25. They suggest that good estimations of the 

true effects are possible using the three-step imputation estimator if we could impute potential outcomes 

for treated units using the data of not-yet treated (including control) units, and simultaneously avoiding 

the issues arising in standard TWFE model. The imputation estimator uses average outcome over all 

pre-treatment periods that could potentially improve the efficiency of the estimator, however, the 

estimator depends on strong PT assumption as it requires PT holding over all pre-treatment periods 

(Roth et al., 2023). The imputation estimator can be more susceptible to bias if there is a monotonic 

violation of pre-trends. (Roth, 2023; de Chaisemartin & d'Haultfoeuille, 2023)  

To understand the approach, it is useful to define Ζ0 as the set of observations for not-yet treated units 

(in particular, Ζ0 includes all observations for the control group and pre-treatment observations for the 

units that eventually become treated) and define Ζ1 as set that includes post-treatment observations for 

treated units. In the first-step, using the set of observations Ζ0, fit the TWFE regression as follows to 

estimate the untreated potential outcomes for observations in Ζ0: 

                   𝑌𝑖,𝑡(Ζ
0) =  𝛼𝑖 + 𝜆𝑡 + 𝜀𝑖𝑡                     (𝐵5.1) 

We can also add time-varying covariates in the above equation. Then in the second-step, use the 

predicted value from the above regression, 𝑌̂𝑖𝑡(Ζ
0), to impute the never-treated potential outcome for 

each unit in the whole data, and, get an estimate of treatment effects for each unit, 

               𝜏̂𝑖𝑡 = 𝑌𝑖𝑡 − 𝑌̂𝑖𝑡                       (𝐵5.2) 

where 𝑌̂𝑖𝑡 is the untreated potential outcome for each unit, and 𝜏̂𝑖𝑡 is the individual treatment effect 

which can be used to form aggregate measures. In the third-step, estimate the weights for each unit 

under treatment and estimate the weighted average of these individual level effects based on target 

estimand.  

   

                                                           
25. See Gardner (2022), Liu et al. (2021) for similar approaches. In this paper, we focus on the estimator 

proposed in Borusyak et al. (2021).   
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Appendix C 

C1. Cohort-specific differences  

Cohort-specific differences: 

In the DGP, 𝛼𝑖 the unit fixed effects are drawn from ~ 𝑁(0,1) + 𝜇𝑐𝑜ℎ𝑜𝑟𝑡 + 𝑒𝑖𝑡 where 𝜇𝑐𝑜ℎ𝑜𝑟𝑡 is  cohort-

specific differences, in other words, imbalance between the cohorts. In the simulation, we have 7 

cohorts, 𝑔 ∈ {3, 6, 9, 12, 15, 18,∞} where ∞ for untreated units. We add cohort-specific differences in 

the DGP to make data more realistic. For example, when a tax-policy is introduced within a country, 

different states adopt the policy at different times indicating some unobserved differences within those 

states. Table C1.1 shows the value the data is generated for each cohort-specific difference. 

Table C1.1: mean for cohort-specific 

difference 
Cohort mean 

3 -0.1 

6 -0.2 

9 -0.3 

12 -0.4 

15 -0.5 

18 -0.6 

∞ 0 

 

C2. True value of treatment effects 

The average treatment effect on treated for each and period, 𝐴𝑇𝑇𝑔,𝑡, for each scenario of treatment 

effect evolution are given by: 

Scenario A (Homogeneous effect): 

𝐴𝑇𝑇𝑔,𝑡 = 1 × 1 [𝑡 ≥ 𝑔] 

Scenario B (Heterogeneity across time): 

𝐴𝑇𝑇𝑔,𝑡 = 0.1(𝑡 − 𝑔 + 1) × 1[𝑡 ≥ 𝑔] 

Scenario C (Heterogeneity across cohorts): 

𝐴𝑇𝑇𝑔,𝑡 = 0.1(𝑔) × 1 [𝑡 ≥ 𝑔] 

Scenario D (Heterogeneity across time and cohorts): 

𝐴𝑇𝑇𝑔,𝑡 = 0.05(𝑡 − 𝑔 + 1) × 1[𝑡 ≥ 𝑔] + 1.15 − 0.05(𝑔) × 1 [𝑡 ≥ 𝑔] 

 

  



50 
 

C3. Stylized example for each scenario of treatment effects evolution 

We present a stylized example of for each scenario treatment effect evolution for true known ATT for 

cohort 𝑔 at time 𝑡, 𝐴𝑇𝑇𝑔,𝑡. The purpose of this example is to clarify the different types of heterogeneity 

in effects used in simulations.  For clarity we focus on three treated cohorts, {X,Y,Z}, over five periods. 

In this example, cohort X receives treatment at time 2; cohort Y receives treatment at time 3; and cohort 

Z received treatment at time 4. The following is the 𝐴𝑇𝑇𝑔,𝑡 for each scenario in this example: 

Scenario A: Homogeneous treatment effect. For this scenario, the true effects are constant. We assume 

the constant is 0.5 (Note. This value 0.5 is used as an example. It do not represent the true effect values 

used in simulation). Table C3.1 shows the treatment effect evolution for scenario A. The bold values 

represent the periods under treatment for each cohort.   

 

Table C3.1: 𝐴𝑇𝑇𝑔,𝑡 evolution scenario A 

 Cohorts 

Time X Y Z 

1 0 0 0 

2 0.5 0 0 

3 0.5 0.5 0 

4 0.5 0.5 0.5 

5 0.5 0.5 0.5 

 

Scenario B: Heterogeneity across time since exposure. In this scenario the treatment effect varies since 

exposure but for each cohort. Table C3.2 shows the evolution of 𝐴𝑇𝑇𝑔,𝑡 for scenario B. We assume the 

true effect is increases with the length of exposure since treatment.  

Table C3.2: 𝐴𝑇𝑇𝑔,𝑡 evolution scenario B 

 Cohorts 

Time X Y Z 

1 0 0 0 

2 0.1 0 0 

3 0.2 0.1 0 

4 0.3 0.2 0.1 

5 0.4 0.3 0.2 

 

Scenario C: Heterogeneity across intervention cohorts. For this scenario, the effect varies across treated 

cohorts but is constant with time since first exposure. Table C3.3 shows the 𝐴𝑇𝑇𝑔,𝑡 evolution for 

scenario C. In this example, we assume the earlier treated cohort experience lower treatment effect 

compared to later treated cohort. 

Table C3.3: 𝐴𝑇𝑇𝑔,𝑡 evolution scenario C 

 Cohorts 

Time X Y Z 

1 0 0 0 

2 0.4 0 0 

3 0.4 0.7 0 

4 0.4 0.7 0.9 

5 0.4 0.7 0.9 
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Scenario D. Heterogeneity across time since exposure and interventions cohorts. In this scenario, the 

true treatment effect varies across both intervention cohorts and time since exposure. Table C3.4 shows 

the 𝐴𝑇𝑇𝑔,𝑡 evolution both across time and cohorts. In this example, 𝐴𝑇𝑇𝑔,𝑡 values for scenario D are the 

combination for scenario B and scenario C. For instance, at time 2 for cohort X, true effect is summation 

of exposure effect (from scenario B) and cohort-specific effect (from scenario C) i.e. 0.1 + 0.4 = 0.5. 

At time 3 for cohort X, true effect is 0.2 (exposure effect at time 3 from scenario B) + 0.4 (cohort-

specific effect at time 3 from scenario C) = 0.6. This way 𝐴𝑇𝑇𝑔,𝑡 is generate for each cohort 𝑔 at time 

𝑡. 

Table C3.4: 𝐴𝑇𝑇𝑔,𝑡 evolution scenario D 

 Cohorts 

Time X Y Z 

1 0 0 0 

2 0.5 0 0 

3 0.6 0.8 0 

4 0.7 0.9 1.0 

5 0.8 1.0 1.1 
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Appendix D  

D1. Linear DiD for Count and Binary outcomes 

For illustration purposes, we show the bias in the TWFE-DiD and alternative estimators if OLS 

(in other words, linear DiD model)26 is used for Count and Binary outcomes. Figures D1.1 and 

D1.2 compare the nonlinear and linear DiD model for Count and Binary outcomes for 

homogeneous effect (Scenario A). The graphs show that all estimators are very biased if the 

linear DiD model, compared to nonlinear DiD model, is employed for Count and Binary 

outcome. Therefore, we need to employ Poisson QMLE for count outcomes and the 

Conditional logit Fixed Effect (CLE) for binary outcomes in place of the OLS estimator used 

for linear models by these approaches. 

                        Panel A (Poisson QMLE)                                                    Panel B (OLS) 

        

Figure D1.1 Boxplots of % bias in treatment effects for Count outcome using Poisson QMLE and OLS, 

for homogeneous effect (Scenario A) 
Note: IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator  

 

                                  Panel A (CLE)                                                                Panel B (OLS) 

        

Figure D1.2 Boxplots of % bias in treatment effects for Binary outcome using CLE and OLS, for 

homogeneous effect (Scenario A) 
Note. IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: Extended-TWFE, IE: 

Imputation estimator 

                                                           
26. The IPW estimator does not employ OLS but linear version of IPW estimator for linear model. Thus, here 

we use the linear version of the IPW estimator for the linear DiD model. 
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D2. Extension of IPW estimator to account for outcome distribution for count 
and binary outcomes 

Equation B2.1 is the IPW estimator for staggered intervention (can be used for single 

intervention) proposed by Callaway & Sant’Anna (2021). The estimator estimates 𝐴𝑇𝑇(𝑔, 𝑡), 

ATTs for each group in each time period, using separate 2 × 2 comparisons. For each 2 × 2 

model, equation B2.1 takes the following form (Sant’Anna & Zhao, 2020): 

𝐴𝑇𝑇𝑡 = 𝜏𝑡  =  
1

Ε[𝐷]
Ε [

𝐷 − 𝑝(𝑋)

1 − 𝑝(𝑋)
 (𝑌𝑡+𝑘 − 𝑌𝑡)]           (𝐷2.1) 

where 𝑌𝑡+𝑘 is the post-treatment outcome and 𝑌𝑡 is the pre-treatment outcome, 𝐷 is the treatment 

indicator, and 𝑝(𝑋) indicates the probability of being treated conditional on pre-treatment 

covariates X. 

For the 2 × 2 model, another way to approach the above equation: 

𝜏 =  𝜃1 − 𝜃0 

where 𝜃1 =  Ε[𝑌𝑖,𝑡+𝑘(1) |𝐷𝑖 = 1], the expected outcome for the treated group is consistently 

estimated by (Li and Li, 2019): 

𝜃1̂ = ∑𝐷𝑖𝑌𝑖,𝑡+𝑘

𝑁

𝑖=1

∑𝐷𝑖

𝑁

𝑖=1

⁄            (𝐷2.2) 

and 𝜃0 =  Ε[𝑌𝑖,𝑡+𝑘(0) |𝐷𝑖 = 1] is their expected counterfactual outcome. We use an IPW 

estimator to estimate 𝜃0̂: 

𝜃0̂ = 
∑ 𝐷𝑖𝑌𝑖,𝑡𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

+ 
∑ (1 − 𝐷𝑖)(𝑌𝑖,𝑡+𝑘 − 𝑌𝑖,𝑡 )𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

           (𝐷2.3) 

Where 𝑤𝑖 equals 1 for the treated group and 𝑤𝑖 = 𝑝̂(𝑋)/(1 − 𝑝̂(𝑋)) for the control group.  

Thus, the ATT for the 2 × 2 model is estimated using the following for continuous outcome, 

which is the mean difference: 

𝐴𝑇𝑇̂ =  𝜏 =  𝜃1̂ − 𝜃0̂        (𝐷2.4) 

Equation (D2.1) and (D2.4) are equivalent for continuous outcome for the 2 × 2 case. 

Count outcomes: 

For count outcomes, the effect for the 2 × 2 model is interpreted as causal rate ratio, where the 

estimand is given by 
Ε[𝑌𝑖,𝑡+𝑘(1) |𝐷𝑖=1]

Ε[𝑌𝑖,𝑡+𝑘(0) |𝐷𝑖=1]
 = 

𝜃1̂

𝜃0̂
 (Li and Li, 2019). In our simulations, we assume the 
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PT assumption holds in the latent scale; therefore, we take the log of the rate ratio. Taking logs 

produces coefficient estimates comparable to those obtained from alternative (regression-

based) estimators. On the log scale, the ATT can be identified using the following specification 

for the 2 × 2 case: 

𝐴𝑇𝑇̂ =  𝜏 = 𝑙𝑛 (
Ε[𝑌𝑖,𝑡+𝑘(1) |𝐷𝑖 = 1]

Ε[𝑌𝑖,𝑡+𝑘(0) |𝐷𝑖 = 1]
) =  𝑙𝑛 (

𝜃1̂

𝜃0̂

)        (𝐷2.5) 

where 𝑙𝑛(𝜃0̂) = 𝑙𝑛 (
∑ 𝐷𝑖𝑌𝑖,𝑡𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

) + 𝑙𝑛 (
∑ (1−𝐷𝑖)(𝑌𝑖,𝑡+𝑘)𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

/
∑ (1−𝐷𝑖)(𝑌𝑖,𝑡 )𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

)  

Binary outcomes:  

For binary outcome, the coefficient estimates are interpreted as causal odds-ratio. For the 2 × 2 

case, the estimand is given by {
Ε[𝑌𝑖,𝑡+𝑘(1)|𝐷𝑖=1]

1−Ε[𝑌𝑖,𝑡+𝑘(1)|𝐷𝑖=1]
} {

Ε[𝑌𝑖,𝑡+𝑘(0)|𝐷𝑖=1]

1−Ε[𝑌𝑖,𝑡+𝑘(0)|𝐷𝑖=1]
}⁄ . Same as the count 

outcome, we take the log of the odds ratio as our simulations assume the PT assumption holds 

in the latent scale. This provides estimates on a similar scale as estimates for alternative 

estimators obtained using logistic regression. The ATT can be identified using the following 

specification for the 2 × 2 case: 

𝐴𝑇𝑇̂ =  𝜏 = 𝑙𝑛

(

 
 

{
Ε[𝑌𝑖,𝑡+𝑘(1) |𝐷𝑖 = 1]

1 − Ε[𝑌𝑖,𝑡+𝑘(1) |𝐷𝑖 = 1]
}

{
Ε[𝑌𝑖,𝑡+𝑘(0) |𝐷𝑖 = 1]

1 − Ε[𝑌𝑖,𝑡+𝑘(0) |𝐷𝑖 = 1]
}
)

 
 

=  ln 

(

 
 

{
𝜃1̂

1 − 𝜃1̂
}

{
𝜃0̂

1 − 𝜃0̂
}
)

 
 

        (𝐷2.6) 

where 𝑙𝑛 (
𝜃0̂

1−𝜃0̂
) = 𝑙𝑛 (

(
∑ 𝐷𝑖𝑌𝑖,𝑡𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

)

1−(
∑ 𝐷𝑖𝑌𝑖,𝑡𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

)

) + 𝑙𝑛 (

∑ (1−𝐷𝑖)(𝑌𝑖,𝑡+𝑘)𝑤𝑖
𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

1−
∑ (1−𝐷𝑖)(𝑌𝑖,𝑡+𝑘)𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

/ 

∑ (1−𝐷𝑖)(𝑌𝑖,𝑡)𝑤𝑖
𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

1−
∑ (1−𝐷𝑖)(𝑌𝑖,𝑡)𝑤𝑖

𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

)  

Equations D2.5 and D2.6 provide ATT estimates for each group in each time period, 𝐴𝑇𝑇(𝑔, 𝑡), 

for count and binary outcomes. Then, in the next step, we follow the aggregation scheme 

suggested by Callaway & Sant’Anna (2021) to obtain overall and dynamic treatment effects. 

We aggregate 𝐴𝑇𝑇(𝑔, 𝑡) to produce overall and dynamic effects of the treatment using 

equations B2.2 and B2.3.  Therefore, our extension of the IPW estimator accounts for the 

outcome distribution in the first step of the estimation procedure, and in the second step, we 

follow the same procedure as in Callaway & Sant’Anna (2021) to aggregate 𝐴𝑇𝑇(𝑔, 𝑡) into 

parameters of interest.  
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Appendix E  

E.1 Count outcome estimated effects boxplots for DiD from simulations 

                                        Panel A                                                                     Panel B 

        

                                        Panel C                                                                     Panel D 

        

Figure E.1: Boxplots of estimated effects from simulations for Count outcome 
Note: The red vertical line represents the true effect for the particular scenario, whereas the grey vertical line represents the true 

effect for stacked regression. IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: 

Extended-TWFE, IE: Imputation estimator 
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E.2 Count outcome mean bias for event-study from simulations 

                                        Panel A                                                                     Panel B 

        

                                        Panel C                                                                     Panel D 

        

Figure E.2: Mean bias in the event-study model for Count outcome 
Note: The line graph shows the mean bias across 500 simulations for each estimator and scenario. Closer to 0 represents low 

mean bias and vice-a-versa. Baseline: TWFE-ES estimator; Callaway & Sant’Anna: Inverse Probability Weighting, Sun & 

Abraham: Interaction-weighted; Wooldridge: Extended-TWFE; Borusyak et al: Imputation estimator. 
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Appendix F  

F.1 Binary outcome estimated effects boxplots for DiD from simulations 

                                        Panel A                                                                     Panel B 

       

                                        Panel C                                                                     Panel D 

        

Figure F.2: Boxplots of estimated effects from simulations for Binary outcome 
Note: The red vertical line represents the true effect for the particular scenario, whereas the grey vertical line represents the true 

effect for stacked regression. IW: Interaction-weighted, IPW: Inverse Probability Weighting, SR: Stacked Regression, ETWFE: 

Extended-TWFE, IE: Imputation estimator 
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F.2 Binary outcome mean bias for event-study from simulations  

                                        Panel A                                                                     Panel B 

       

                                        Panel C                                                                     Panel D 

       

Figure F.2: Mean bias in the event-study model for Binary outcome 
Note: The line graph shows the mean bias across 500 simulations for each estimator and scenario. Closer to 0 represents low mean 

bias and vice-a-versa. Baseline: TWFE-ES estimator; Callaway & Sant’Anna: Inverse Probability Weighting, Sun & Abraham: 

Interaction-weighted; Wooldridge: Extended-TWFE; Borusyak et al: Imputation estimator. 
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Appendix G: Comparison of the estimators 

Table B1: Comparison of the estimators 

 
Clean controls 

issue/ 

comparison 

group 

Negative weighting 

issue 

Parallel Trend 

(PT) 

assumption 

reference year 

Data requirements Finest estimand 

      

standard 

TWFE 

estimator 

Create 

counterfactuals 

using never 

treated, not-yet 

treated, and 

already-treated 

units. Using 

already treated 

creates "bad 

comparisons" 

that may lead to 

biased estimates. 

Under heterogeneous 

treatment effects, 

"bad comparisons" 

may put negative 

weight on the 

parameter of interest. 

Also, the estimates 

suffer from "cross-lag 

contamination" 

discussed in Sun & 

Abraham (2021) 

Imposes PT 

right before the 

treatment starts 

until the last 

time period 

Does not require pre-

treatment periods. 

Estimates will be provided 

even when pre-treatment 

periods are not available 

for some units 

𝐴𝑇𝑇 = produces 

single treatment 

effect 

interaction 

weighted 

estimator by 

Sun and 

Abraham 

(2021) 

Explicitly 

creates "good 

comparisons" 

using never 

treated and/or 

not-yet treated 

units 

The estimation uses 

fully interacted 

regressions to recover 

an estimate of group 

specific ATT that 

avoids the limitation 

of TWFE regression 

Imposes PT 

right before the 

treatment starts 

until the last 

time period 

Strict requirement of at 

least one pre-treatment 

period for treated units; 

otherwise unit is dropped 

from estimation. And, a set 

of never treated units (if 

available, otherwise last-

treated cohort) is used as 

control cohort 

𝐴𝑇𝑇(𝑔, 𝑡) = 

Treatment effect 

for each cohort 𝑔 

for each period 𝑡 

Inverse-

probability 

weighting by 

Callaway & 

Sant’Anna 

(2021) 

Explicitly 

creates "good 

comparisons" 

using never 

treated and/or 

not-yet treated 

units 

The estimator uses 

separate 2x2 

comparisons to 

estimate effects for 

each group for each 

period using the last 

pre-intervention 

period for comparison 

to avoid the limitation 

of TWFE regression 

Imposes PT 

right before the 

treatment starts 

until the last 

time period; 

however option 

to choose 

arbitrary pre-

treatment 

period 

Strict requirement of at 

least one pre-treatment 

period for treated units; 

otherwise unit is dropped 

from estimation. And, a set 

of never treated units, if 

available, otherwise not-

yet treated units are used 

as control 

𝐴𝑇𝑇(𝑔, 𝑡) = 

Treatment effect 

for each cohort 𝑔 

for each period 𝑡 

stacked 

regression 

Explicitly 

creates "good 

comparisons" 

using never 

treated and/or 

not-yet treated 

units 

Under heterogeneous 

treatment effects, the 

effects are biased as 

weights are assigned 

by the regression 

estimator are not 

proportional to cohort 

share under treatment 

Imposes PT 

right before the 

treatment starts 

until the last 

time period 

Requires a common 

window for pre-treatment 

and post-treatment periods 

for all treated units.  

𝐴𝑇𝑇 = produces 

single treatment 

effect 

imputation 

estimator 

by Borusyak 

et al (2021) 

Explicitly 

creates "good 

comparisons 

(imputed 

counterfactuals)" 

using not-yet 

treated 

observations 

The estimator used 

not-treated 

observations to create 

counterfactuals and 

explicitly specifies 

individual weights 

that avoid the 

limitation of TWFE 

regression 

Imposes PT in 

all pre-

treatment 

periods until 

the last time 

period 

Strict requirement of at 

least one pre-treatment 

period for treated units; 

otherwise unit is dropped 

from estimation. And, a set 

of never treated units (if 

available, otherwise last-

treated cohort) used as 

control cohort 

𝜏𝑖𝑡 = Treatment 

effect for each 

unit 𝑖 for each 

period 𝑡 

Extended 

TWFE  

by 

Wooldridge 

(2023) 

Explicitly 

creates "good 

comparisons" 

using never 

treated and/or 

not-yet treated 

units 

The estimation uses 

post-treatment fully 

interacted regressions 

to recover an estimate 

of group specific 

ATT that avoids the 

limitation of TWFE 

regression 

Imposes PT in 

all pre-

treatment 

periods until 

the last time 

period 

Strict requirement of at 

least one pre-treatment 

period for treated units; 

otherwise unit is dropped 

from estimation. And, a set 

of never treated units (if 

available, otherwise last-

treated cohort) is used as 

control cohort 

𝐴𝑇𝑇(𝑔, 𝑡) = 

Treatment effect 

for each cohort 𝑔 

for each period 𝑡 
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Note: In this paper, we use only “never-treated” units as controls to create clean controls. A researcher should be careful 

when using “never treated” units versus “not-yet treated” units as controls, as choosing either has implications for the 

evolution of the parallel trend assumption. If researchers assume parallel trend holds based on both never treated and not-

yet treated units as controls and use only never treated units as controls in estimation, the estimation will not estimate the 

causal effect due to violation of parallel trend assumption. 
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