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Abstract

The aim of this paper is to assess whether explicitly modeling structural change increases the accuracy of

macroeconomic forecasts. We produce real time out-of-sample forecasts for inflation, the unemployment

rate and the interest rate using a Time-Varying CoefficientsVAR with Stochastic Volatility (TV-VAR) for

the US. The model generates accurate predictions for the three variables. In particular for inflation the TV-

VAR outperforms, in terms of mean square forecast error, allthe competing models: fixed coefficients VARs,

Time-Varying ARs and the naı̈ve random walk model. These results are also shown to hold over the most

recent period in which it has been hard to forecast inflation.

JEL classification: C32, E37, E47.

Keywords: Forecasting, Inflation, Stochastic Volatility, Time Varying VectorAutoregression.
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1. Introduction

The US economy has undergone many structural changes during the post-WWII period. Long run

trends in many macro variables have changed. Average unemployment andinflation were partic-

ularly high during the 70s and low in the last decades (see Staiger, Stock, and Watson, 2001).

Business cycle fluctuations have moderated substantially in the last twenty years and the volatility

of output growth has reduced sharply. This latter phenomenon is typically referred to as the ”Great

Moderation” (Stock and Watson, 2004). Also the dynamics of inflation havechanged drastically:

after the mid 80s inflation has become more stable and less persistent (see Cogley and Sargent,

2001).1

In addition to these series-specific changes many important changes in the relationships between

macroeconomic variables have been documented. For instance, some authors have argued that the

Phillips curve is no longer a good characterization of the joint dynamics of inflation and unem-

ployment. Such a claim is partly based on the result that the predictive content of unemployment

for inflation has vanished since the mid 80s (Atkeson and Ohanian, 2001; Roberts, 2006; Stock

and Watson, 2008a).2 The same period has seen significant changes in the conduct of macroeco-

nomic policy. For example, according to many observers, monetary policy has become much more

transparent and aggressive against inflation since the early 80s (Clarida, Gali, and Gertler, 2000).

In this paper we address the following question: can the accuracy of macroeconomic forecasts be

improved by explicitly modeling structural change? The answer to this questionis far from trivial.

On the one hand, clearly, if the economy has changed, a forecasting model that can account for such

changes would be better suited and should deliver better forecasts. On the other hand, however, a

richer model structure implying a higher number of parameters should increase the estimation errors

and reduce the forecast accuracy.

The relevance of modeling time variation was originally stressed by Doan, Litterman, and Sims

(1984), but surprisingly there are only a few studies aiming at exploring the issue systematically

(see Stock and Watson (1996), Canova (2007), Clark and McCracken (2007), Stock and Watson

1Changes in persistence are still debated, for instance Pivetta and Reis (2007) find that the changes are not significant.
2More generally, the ability to exploit macroeconomic linkages for predictinginflation and real activity seems to have

declined remarkably since the mid-1980s, see (D’Agostino, Giannone,and Surico, 2006) and Rossi and Sekhposyan
(2008).
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(2007)). These studies use different models and forecasting periodsbut they all share a common

feature: they focus on the time variation in the coefficients but do not allow for changes in volatility.

The only exception is Stock and Watson (2007) who, however, do not have lagged dynamics in their

forecasting equation.

We forecast three macroeconomic variables for the US economy, the unemployment rate, infla-

tion and a short term interest rate, using a Time-Varying Coefficients VAR with Stochastic Volatility

(TV-VAR henceforth) as specified by Primiceri (2005). The model is very flexible. In particular it

allows for a) changes in the predictable component (time-varying coefficients), which can be due to

variations in the structural dynamic interrelations among macroeconomic variables; and b) changes

in the unpredictable component (stochastic volatility), that is, variations in the size and correlation

among forecast errors, which can be due to changes in the size of exogenous shocks or their impact

on macroeconomic variables.3

In the forecasting exercise we aim at mimicking as close as possible the conditions faced by a

forecaster in real-time. We use “real-time data” to compute predictions based only on the data that

were available at the time the forecasts are made. We forecast up to 3 yearsahead. This longer

horizon has been chosen to fill the gap with the existing literature, which has mainly focused on

the shorter horizons up to one year.4 Long run persistent components can play a crucial role in

explaining longer horizon dynamics, while their contribution in explaining short run movements in

the variables can be negligible.

The accuracy of the predictions (the mean square forecast errors) of the TV-VAR are compared

to the predictions based on other standard forecasting models: fixed coefficients VARs (estimated

recursively or with rolling window), Time-Varying ARs and the naı̈ve random walk model.

The assessment of the forecasting performance of econometric models has become standard in

macroeconomics, even if the ultimate goal is not forecasting. Forecasting evaluation can be seen

as a validation procedure which is particularly important for very flexible and general models. In

general, introducing complexity in the model to better describe the data does not necessary enhance

3Allowing for the two sources of change is also important in the light of the ongoing debate about the relative im-
portance of changes in the predictable and unpredictable components in the Great Moderation (Giannone, Lenza, and
Reichlin, 2008).

4Clark and McCracken (2007) have also results for the very long horizon of ten years.
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real-time forecasting performances. The benefit from more flexibility might belimited if the more

flexibility captures also non prominent features of the data. If model complexity is introduced with

a proliferation of parameters, instabilities due to estimation uncertainty might completely offset the

gains obtained by limiting model miss-specification. Out-of-sample forecasting evaluations repre-

sent hence an important device to evaluate the ability of capturing prominent features of the data

within a parsimonious models. In addition, the out-of-sample exercise will also provide indications

on some subjective choices that are required for the estimation of the TV-VAR model, such as the

setting of the prior beliefs on the relative amount of time variations in the coefficients.

In addition, the paper studies another core aspect of the TV-VAR model which has not been

tackled by the previous literature; the effect of explosive roots on the forecast accuracy. In particular,

we compare the predictive ability of the model in two cases: in the first one the explosive paths

(draws which make instable the system) are excluded, while in the second onesuch restriction is

not imposed and all draws are used to compute the forecasts. The presence of explosive paths could

have relevant effects especially over the longer horizon forecasts.5

Our main findings show that the TV-VAR is the only model which systematically delivers ac-

curate forecasts for the three variables. For inflation the forecasts generated by the TV-VAR are

much more accurate than those obtained with any other model. For unemployment, the forecasting

accuracy of the TV-VAR model is very similar to that of the fixed coefficientVAR, while forecasts

for the interest rate are comparable to those obtained with the Time-Varying AR. These results hold

for different sub-samples. In particular, they are also confirmed overthe Great Moderation period,

a period in which forecasting models are often found to have difficulties in outperforming simple

näıve models in forecasting many macroeconomic variables especially inflation. Results suggest

that, on the one hand time varying models are “quicker” in recognizing structural changes in the

permanent components of inflation and interest rate, and, on the other hand, that short term relation-

ships among macroeconomic variables carry out important information, oncestructural changes are

properly taken into account.

The rest of the paper is organized as follows, section 2 describes the TV-VAR model; section 3

explains the forecasting exercise; section 4 presents the results and section 5 concludes.

5Clark and McCracken (2007) found that the time-varying VAR performs particularly badly over the ten year horizon.
This might be due to the presence of explosive roots.
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2. The Time-Varying Vector Autoregressive Model

Let yt = (πt, URt, IRt)
′ whereπt is the inflation rate,URt the unemployment rate andIRt a

short term interest rate. We assume thatyt admits the following time varying coefficients VAR

representation:

yt = A0,t +A1,tyt−1 + ...+Ap,tyt−p + εt (1)

whereA0,t contains time-varying intercepts,Ai,t are matrices of time-varying coefficients,i =

1, ..., p andεt is a Gaussian white noise with zero mean and time-varying covariance matrixΣt.

Let At = [A0,t, A1,t..., Ap,t], andθt = vec(A′
t), wherevec(·) is the column stacking operator.

Conditional on such an assumption, we postulate the following law of motion forθt:

θt = θt−1 + ωt (2)

whereωt is a Gaussian white noise with zero mean and covarianceΩ. We letΣt = FtDtF
′
t , where

Ft is lower triangular, with ones on the main diagonal, andDt a diagonal matrix. Letσt be the

vector of the diagonal elements ofD1/2
t andφi,t, i = 1, ..., n − 1 the column vector formed by

the non-zero and non-one elements of the(i + 1)-th row of F−1
t . We assume that the standard

deviations,σt, evolve as geometric random walks. The simultaneous relationsφit in each equation

of the VAR are assumed to evolve as independent random walks.

log σt = log σt−1 + ξt (3)

φi,t = φi,t−1 + ψi,t (4)

whereξt andψi,t are Gaussian white noises with zero mean and covariance matrixΞ andΨi, re-

spectively. Letφt = [φ′1,t, . . . , φ
′
n−1,t], ψt = [ψ′

1,t, . . . , ψ
′
n−1,t], andΨ be the covariance matrix

of ψt. We assume thatψi,t is independent ofψj,t, for j 6= i, and thatξt, ψt, ωt, εt are mutually

uncorrelated at all leads and lags.6

6In principle, one could makeεt andωt correlated. However, it is well known that such model can be equivalently
represented with a setup where shocks are mutually uncorrelated butεt is serially correlated. Since our measurement
equation is a VAR, such a flexibility is unnecessary here.
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2.1. Forecasts

Equation (1) has the following companion form

yt = µt + Atyt−1 + ǫt

whereyt = [y′t...y
′
t−p+1]

′, ǫt = [ε′t0...0]′ andµt = [A′
0,t0...0]′ arenp× 1 vectors and

At =

(

At

In(p−1) 0n(p−1),n

)

whereAt = [A1,t...Ap,t] is ann× np matrix,In(p−1) is ann(p− 1)× n(p− 1) identity matrix

and0n(p−1),n is a n(p − 1) × n matrix of zeros. Let̂µt andÂt denote the median of the joint

posterior distribution ofµt At (see appendix for the details). The one-step ahead forecast is

ŷt+1|t = µ̂t + Âtyt (5)

A technical issue arises when we generate multi-step expectations; we haveto evaluate the

future path of drifting parameters. We follow the literature and treat those parameters as if they had

remained constant at the current level.7 As a consequence, forecasts at timet + h are computed

iteratively:

ŷt+h|t = µ̂t + Âtŷt+h−1 =
h

∑

j=1

Â
j−1
t µ̂t + Âh

t yt (6)

2.2. Priors specification

The model is estimated using Bayesian methods. While the details of the estimation areaccurately

described in the Appendix, in this section we briefly discuss the specificationof our priors. Fol-

lowing Primiceri (2005), we make the following assumptions for the priors densities. First, the

coefficients of the covariances of the log volatilities and the hyperparameters are assumed to be

independent of each other. The priors for the initial statesθ0, φ0 andlog σ are assumed to be nor-

7See Sbordone and Cogley (2008) for a discussion of the implications of this simplifying assumption.
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mally distributed. The priors for the hyperparameters,Ω, Ξ andΨ are assumed to be distributed as

independent inverse-Wishart. More precisely, we have the following priors:

• Time varying coefficients:P (θ0) = N(θ̂, V̂θ) andP (Ω) = IW (Ω−1
0 , ρ1);

• Stochastic Volatilities:P (log σ0) = N(log σ̂, In) andP (Ψi) = IW (Ψ−1
0i , ρ3i);

• Simultaneous relations:P (φi0) = N(φ̂i, V̂φi
) andP (Ξ) = IW (Ξ−1

0 , ρ2);

where the scale matrices are parameterized as followsΩ−1
0 = λ1ρ1V̂θ, Ψ0i = λ3iρ3iV̂φi

and

Ξ0 = λ2ρ2In. The hyper-parameters are calibrated using a time invariant recursive VAR estimated

using a sub-sample consisting of the firstT0 observations.8 For the initial statesθ0 and the con-

temporaneous relationsφi0, we set the means,̂θ and φ̂i, and the variances,̂Vθ and V̂φi
, to be the

maximum likelihood point estimates and four times its variance. For the initial states ofthe log

volatilities, log σ0, the mean of the distribution is chosen to be the logarithm of the point estimates

of the standard errors of the residuals of the estimated time invariant VAR. The degrees of freedom

for the covariance matrix of the drifting coefficient’s innovations are set tobe equal toT0, the size of

the initial-sample. The degrees of freedom for the priors on the covariance of the stochastic volatil-

ities’ innovations, are set to be equal to the minimum necessary for insuring the prior is proper.

In particular,ρ1 andρ2 are equal to the number of rowsΞ−1
0 andΨ−1

0i plus one respectively. The

parametersλi are very important since they control the degree of time variations in the unobserved

states. The smaller such parameters are, the smoother and smaller are the changes in coefficients.

The empirical literature has set the prior to be rather conservative in terms of the amount of time

variations. The exact parameterizations used will be discussed in the empirical section.

3. Real-time forecasting

Our objective is to predict theh-period ahead unemployment rateURt+h, the interest rateIRt+h

and the annualized price inflationπh
t+h = 400

h log(
Pt+h

Pt
), wherePt+h is the GDP deflator at time

t+ h and 400
h is the normalization term.

8
T0 is equal to 32 quarters.
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3.1. Data

Prices are measured by the GDP deflator and the interest rate is measured by the three month trea-

sury bills. We use real time data forPt andURt,9 while the three month interest rate series is

not subject to revisions.10 Since unemployment and interest rate series are available at monthly

frequency, we follow Cogley and Sargent (2001, 2005) and Cogley,Primiceri, and Sargent (2008)

and convert them into quarterly series by taking the value at the mid-month of the quarter forURt

and the value at the first month of the quarter forIRt. We use quarterly vintages from 1969:Q4 to

2007:Q4. Vintages can differ since new data on the most recent period are released, but also because

old data get revised. As a convention we date a vintage as the last quarter for which all data are

available. For each vintage the sample starts in 1948:Q1.11 For the GDP deflator we compute the

annualized quarterly inflation rate,πt = 400 log( Pt

Pt−1
). We perform an out-of-sample simulation

exercise.12 The procedure consists of generating the forecasts by using the same information that

would have been available to the econometrician who had produced the forecasts in real time. The

simulation exercise begins in 1969:Q4 and, for such a vintage, parameters are estimated using the

sample 1948:Q1 to 1969:Q4. The model is estimated with two lags. We compute the forecasts up

to 12 quarters ahead outside the estimation window, from 1970:Q1 to 1972:Q4,and the results are

stored.13 Then, we move one quarter ahead and re-estimate the model using the data in vintage

1970:Q1. Forecasts from 1970:Q2 to 1973:Q1 are again computed and stored. This procedure is

then repeated using all the available vintages. Predictions are compared withex-post realized data

vintages. Since data are continuously revised at each quarter, several vintages are available. Fol-

lowing Romer and Romer (2000), predictions are compared with the figures published after the next

two subsequent quarters. These figures are conceptually similar to the series being predicted in real

time since they do not incorporate rebenchmarking and other definitional changes. In addition, these

9The data are available on the Federal Reserve Bank of Philadelphia website at:
http://www.phil.frb.org/econ/forecast/reaindex.html.

10The series is available on the FRED dataset of the Federal Reserve Bankof St. Louis (mnemonics TB3MS), at:
http://research.stlouisfed.org/fred2/series/TB3MS

11The vintages have a different time length, for example the sample span for the first vintage is 1948:Q1-1969:Q4,
while the sample span for the last available vintage is 1948:Q1-2007:Q4.

12Data for the same period can differ across vintages because of revisions; for notational simplicity we drop the
indication of the vintage.

13In the simulation exercise forecasts for horizonh = 1 correspond to nowcast, given that in real time data are available
only up to the previous quarter.
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figures are based on a relatively complete set of data available to the statistical offices. Qualitative

results are confirmed if we compare with final data.

Two important aspects of the TV-VAR specification are worth noting. The first one concerns the

setting ofλi, the parameter which fixes the tightness of the variance of the coefficients .In general,

the literature has been quite conservative; very little time variation has been used in practice to set

this parameter. The second aspect concerns the inclusion (or exclusion) of explosive draws from

the analysis. That is, whether to keep or discard draws whose (VAR polynomial) roots lie inside the

unit circle. We report results for the most conservative priors of Primiceri (2005) (λ1 = (0.01)2,

λ2 = (0.1)2 andλ3 = (0.01)2) and discard the explosive draws. However, we also run some

robustness checks to understand the sensitivity of the model to alternativespecifications. In a first

simulation, we set more stringent priors, while in a second simulation we keep theexplosive draws.

3.2. How much time variation?

In order to understand if time variation is an important characteristic of the dataset, we estimate the

TV-VAR model over the all sample and plot the estimated parameters and the standard deviation of

the residuals (with the confidence bands) over time.

Figure 1 in Appendix shows the evolution of the coefficients over the sample.Many of them

display constant patterns, while about four parameters are characterized by remarkable fluctuations

over time. Figure 2 shows evolution of the standard deviation of the residuals. All the volatilities

exhibit accentuate time variation over the sample. The figure also shows that, concomitant with the

great moderation period (middle 1980s), there is a sharp drop in the volatility of the residuals.

All in all these results show that time variation is an important features of the data. Modeling

such feature in both coefficients and variance is crucial for an accurate estimation and a correct

interpretation of the results.

3.3. Other forecasting models

We compare the forecast obtained with the TV-VAR with those obtained using different standard

forecasting models. First, we consider Time Varying Autoregressions (TV-AR) for each for the
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three series. We will keep the same specification and prior beliefs used forthe TV-VAR. Second,

we also consider univariate (AR) and multivariate (VAR) forecasts produced using fixed coefficient

models. For sake of comparability, all the models are estimated with two lags. The models are

estimated either recursively (REC), i.e. using all the data available at the time theforecast are made

or using a rolling (ROL) window, i.e using the most recent ten years of data available at the time

the forecast are made. The estimation over a rolling window is a very simple device to take time

variation into account. The forecasts computed recursively and with rolling windows (on the VAR

and AR models) will be denoted by VAR-REC, VAR-ROL, AR-REC, and AR-ROL respectively.

Notice that the models predict quarterly inflation, therefore the forecasts for theh− quarter inflation

πh
t+h are computed by cumulating the firsth forecasts of the first entries (which correspond toπt)

of the forecasted vector̂yt+h|t, that isπ̂h
t+h|t = 1

h

∑h
i=1 π̂t+i|t. We will also compute no-change

forecasts which are used as a benchmark. According to this naı̈ve model, unemployment and interest

rate nexth− quarter ahead are predicted to be equal to the value observed in the current quarter.

In the case of inflation we use a different benchmark. Atkeson and Ohanian (2001) showed that,

since 1984, structural models of US inflation have been outperformed by anäıve forecasts based on

the average rate of inflation over the current and previous three quarters. This is essentially a ”no

change” forecast for annual inflation:

π̂
h,ao
t+h|t = π4

t =
1

4
(πt + πt−1 + πt−2 + πt−3) (7)

3.4. Forecast evaluation

Forecast accuracy is evaluated by means of the Mean Square Forecast Error (MSFE). The MSFE is a

measure of the average forecast accuracy over the out-of-sample window. In the empirical exercise

we use two samples to evaluate forecasting accuracy. The full sample,1970 : Q1 − 2007 : Q4 and

the sample1985 : Q1 − 2007 : Q4. This latter period corresponds to the great moderation period.

To facilitate the comparison between various models, the results are reportedin terms of relative

MSFE statistics, that is the ratio between the MSFE of a particular model to the MSFE of the näıve

model, used as the benchmark. When the relative MSFE is less than one, forecasts produced with a

given non-benchmark model are, on average, more accurate that those produced with the benchmark
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model. For example, a value of 0.8 indicates that the model under consideration improves upon the

benchmark by 20%.

4. Results

This section discusses the main findings of the forecasting exercise. Table2 summarizes the results

of the real time forecast evaluation, over the whole sample, for the three variables (inflation rate

πt, unemployment rateURt and the interest rateIRt), and for the forecast horizons of one quarter,

one year, two years and three years ahead. For the benchmark naı̈ve models we report the MSFE,

while for the remaining models we report the MSFE relative to that of the naı̈ve model (RMSFE).

The overall performance of each model is summarized, at each horizon,by averaging over the three

variables.

Overall the TV-VAR produces very accurate forecasts for all the variables and, on average,

performs better than any other model considered. In particular it outperforms the näıve benchmark

for all the variables at all horizons with gains ranging from 5 to 28 percent.

The best relative performances of the TV-VAR model is obtained for inflation. For this variable,

the TV-VAR model produces the best forecast with an average (over the horizons) improvements of

about 30% relative to the benchmark. A relative good performance is alsoobserved for the TV-AR

with improvements of about 10% at horizons of 1 and 2 years. The other time invariant specifi-

cations, univariate and multivariate, fail to improve upon the benchmark in terms of forecasting

accuracy.

For interest rates, the varying parameter univariate and multivariate modelsperform similarly

and they both improve upon constant parameter models. The advantage of the time-varying over

constant parameter models is less clear cut for unemployment and interest rate. For unemploy-

ment, especially at long horizons, all models display good forecasting performances relative to the

”näıve”benchmark. Notice, however, that the TV-VAR performs well for allhorizons.

In conclusion, the TV-VAR model is the only one which does well systematicallyacross vari-

ables and horizons.

These findings show that time varying models are quicker than fixed parameters specifications
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to recognize structural changes in the permanent components of inflation and interest rate. They also

suggest that interrelationships among macroeconomic variables carry outimportant information for

forecasting, especially for unemployment and inflation, given that the accuracy of the multivariate

time varying specification is always better than that of the univariate counterparts.

Table 3 shows the results for the “Great Moderation” period. Such a period is of particular

interest because it has been shown that it is extremely difficult to produceforecasts which are more

accurate than those obtained with simple naı̈ve random walk models; however, also in this period,

most of the earlier findings are confirmed. First, the TV-VAR model generates the most accurate

forecasts for all the variables. Second, the TV-VAR is again the model producing the best forecast

for inflation with an average improvement (over the horizons) of about 30% on the random walk.

In particular, the model performs very well for long run inflation forecasts, the improvement at

the 3 years horizon is almost double that of the full sample, it is now about 52%; therefore the

predictability of inflation can be reestablished once we account for structural changes. This is

in line with Cogley, Primiceri, and Sargent (2008) and Stock and Watson (2008b) who point out

that the death of the Phillips curve is an artifact due to the neglected inflation trends and non-

linearities. Third, forecasts of the interest rate obtained with the time varying models are more

accurate than those in the previous sample. This might reflect the increasedimportance of the

systematic predictable component of monetary policy in the last two decades. Finally, time varying

methods also display more accurate forecasts, relative to the previous sample, for the unemployment

rate series, over the longer horizons.

Finally, Tables 4-7 report the results of two different forecast simulations over the two samples.

In the first one we use a more stringent priors specification to generate theforecasts. By more

stringent we mean that we assume ana priori smaller degree of variation in all the coefficients.

Results are comparable, in terms of accuracy, with those obtained with the previous specification.

The general message is that forecasts are particularly accurate when we attribute low probabilities

of structural change. In the second simulation, we keep the explosive draws generated in the Gibb

sampler algorithm. In this case the accuracy of the forecasts deteriorates for all the variables and

in particular for the unemployment rate and interest rate. Similar result have been found by Clark

and McCracken (2007) for longer term forecasts. This result, we believe, is especially interesting
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since there is no clear consensus about whether explosive draws should be discarded or not. Our

results indicate that adjusting estimates to discard explosive roots is needed toimprove out-of-

sample forecast accuracy.

Figure 3 in Appendix shows the forecasts, obtained with and without the explosive roots, for the

three variables at three years horizon. The main differences between the forecasts are on the first

part of the sample until mid 1980s. Forecasts which include explosive draws are more volatile (this

is true for inflation and interest rate). This is due to higher persistence of the series during those

years, as consequence there is a higher probability to draw explosive roots and as consequence

long-term forecasts tend to deviate from the unconditional mean. After the mid1980s the forecasts

generated with and without explosive roots display similar patterns.

5. Conclusions

The US economy has changed substantially during the post-WWII period. This paper tries to assess

whether explicitly modeling these changes can improve the forecasting accuracy of key macroeco-

nomic time series.

We produce real time out-of sample forecasts for inflation, the unemployment rate and a short

term interest rate using time-varying coefficients VAR with stochastic volatility and we compare its

forecasting performance to that of other standard models. Our findings show that the TV-VAR is the

only model which systematically delivers accurate forecasts for the three variables. For inflation,

the forecasts generated by the TV-VAR are much more accurate than thoseobtained with any other

model. These results hold for the Great Moderation period (after mid 1980’s). This is particularly

interesting since previous studies found that over this sample forecasting models have considerable

difficulty in outperforming simple näıve models in predicting many macroeconomic variables, in

particular inflation.

We draw two main conclusions. First, taking into account structural economicchange is impor-

tant for forecasting. Second, the TV-VAR model is a very powerful tool for real-time forecasting

since it incorporate in a flexible but parsimonious manner the prominent features of a time-varying

economy.
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This is a first step in the investigation of how structural change can be explicitly modeled for

improving macroeconomic forecasting. We have assessed the accuracy of point forecasts. The as-

sessment of real-time accuracy of density forecasts is an interesting roadfor future research since,

as pointed out by Cogley, Morozov, and Sargent (2005), the TV-VARmodel is well suited to char-

acterizing also forecasting uncertainty, in particular for inflation in a situation inwhich monetary

policy and the economy are subject to ongoing changes.
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Appendix

Estimation is done using Bayesian methods. To draw from the joint posterior distribution of model

parameters we use a Gibbs sampling algorithm along the lines described in Primiceri (2005). The

basic idea of the algorithm is to draw sets of coefficients from known conditional posterior distribu-

tions. The algorithm is initialized at some values and, under some regularity conditions, the draws

converge to a draw from the joint posterior after a burn in period. Letz be(q×1) vector, we denote

zT the sequence[z′1, ..., z
′
T ]′. Each repetition is composed of the following steps:

1. p(σT |xT , θT , φT ,Ω,Ξ,Ψ, sT )

2. p(sT |xT , θT , σT , φT ,Ω,Ξ,Ψ)14

3. p(φT |xT , θT , σT ,Ω,Ξ,Ψ, sT )

4. p(θT |xT , σT , φT ,Ω,Ξ,Ψ, sT )

5. p(Ω|xT , θT , σT , φT ,Ξ,Ψ, sT )

6. p(Ξ|xT , θT , σT , φT ,Ω,Ψ, sT )

7. p(Ψ|xT , θT , σT , φT ,Ω,Ξ, sT )

Gibbs sampling algorithm

• Step 1: sample fromp(σT |yT , θT , φT ,Ω,Ξ,Ψ, sT )

To drawσT we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Considerthe

system of equationsy∗t ≡ F−1
t (yt −X ′

tθt) = D
1/2
t ut, whereut ∼ N(0, I), Xt = (In ⊗ x′t), and

xt = [1n, yt−1...yt−p]. Conditional onyT , θT , andφT , y∗t is observable. Squaring and taking the

logarithm, we obtain

y∗∗t = 2rt + υt (8)

rt = rt−1 + ξt (9)

14See below the definition ofsT .
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wherey∗∗i,t = log((y∗i,t)
2 + 0.001) - the constant (0.001) is added to make estimation more robust

- υi,t = log(u2
i,t) andrt = log σi,t. Since, the innovation in (8) is distributed aslogχ2(1), we

use, following KSC, a mixture of 7 normal densities with component probabilitiesqj , meansmj −

1.2704, and variancesv2
j (j=1,...,7) to transform the system in a Gaussian one, where{qj ,mj , v

2
j }

are chosen to match the moments of thelogχ2(1) distribution. The values are:

Table 1:Parameters Specification

j qj mj v2
j

1.0000 0.0073 -10.1300 5.7960

2.0000 0.1056 -3.9728 2.6137

3.0000 0.0000 -8.5669 5.1795

4.0000 0.0440 2.7779 0.1674

5.0000 0.3400 0.6194 0.6401

6.0000 0.2457 1.7952 0.3402

7.0000 0.2575 -1.0882 1.2626

Let sT = [s1, ..., sT ]′ be a matrix of indicators selecting the member of the mixture to be

used for each element ofυt at each point in time. Conditional onsT , (υi,t|si,t = j) ∼ N(mj −

1.2704, v2
j ). Therefore we can use the algorithm of Carter and R.Kohn (1994) to draw rt (t=1,...,T)

fromN(rt|t+1, Rt|t+1), wherert|t+1 = E(rt|rt+1, y
t, θT , φT ,Ω,Ξ,Ψ, sT , ) andRt|t+1 = V ar(rt|rt+1, y

t, θT , φT ,Ω,

• Step 2: sample fromp(sT |yT , θT , σT , φT ,Ω,Ξ,Ψ)

Conditional ony∗∗i,t andrT , we independently sample eachsi,t from the discrete density defined

by Pr(si,t = j|y∗∗i,t , ri,t) ∝ fN (y∗∗i,t |2ri,t +mj − 1.2704, v2
j ), wherefN (y|µ, σ2) denotes a normal

density with meanµ and varianceσ2.

• Step 3: sample fromp(φT |yT , θT , σT ,Ω,Ξ,Ψ, sT )

Consider again the system of equationsF−1
t (yt − X ′

tθt) = F−1
t ŷt = D

1/2
t ut. Conditional on

θT , ŷt is observable. SinceF−1
t is lower triangular with ones in the main diagonal, each equation
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in the above system can be written as

ŷ1,t = σ1,tu1,t (10)

ŷi,t = −ŷ[1,i−1],tφi,t + σi,tui,t i = 2, ..., n (11)

whereσi,t andui,t are theith elements ofσt andut respectively,̂y[1,i−1],t = [ŷ1,t, ..., ŷi−1,t]. Under

the block diagonality ofΨ, the algorithm of Carter and R.Kohn (1994) can be applied equation by

equation, obtaining draws forφi,t from aN(φi,t|t+1,Φi,t|t+1), whereφi,t|t+1 = E(φi,t|φi,t+1, y
t, θT , σT ,Ω,Ξ,Ψ)

andΦi,t|t+1 = V ar(φi,t|φi,t+1, y
t, θT , σT ,Ω,Ξ,Ψ).

• Step 4: sample fromp(θT |yT , σT , φT ,Ω,Ξ,Ψ, sT )

Conditional on all other parameters and the observables we have

yt = X ′
tθt + εt (12)

θt = θt−1 + ωt (13)

Draws forθt can be obtained from aN(θt|t+1, Pt|t+1), whereθt|t+1 = E(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ)

andPt|t+1 = V ar(θt|θt+1, y
T , σT , φT ,Ω,Ξ,Ψ) are obtained with the algorithm of Carter and

R.Kohn (1994).

• Step 5: sample fromp(Ω|yT , θT , σT , φT ,Ξ,Ψ, sT )

Conditional on the other coefficients and the data,Ω has an Inverse-Wishart posterior density

with scale matrixΩ−1
1 = (Ω0 +

∑T
t=1 ∆θt(∆θt)

′)−1 and degrees of freedomdfΩ1
= dfΩ0

+ T ,

whereΩ−1
0 is the prior scale matrix,dfΩ0

are the prior degrees of freedom andT is length of the

sample use for estimation. To draw a realization forΩ makedfΩ1
independent drawszi (i=1,...,dfΩ1

)

fromN(0,Ω−1
1 ) and computeΩ = (

∑dfΩ1

i=1 ziz
′
i)
−1 (see Gelman et. al., 1995).

• Step 6: sample fromp(Ξi,i|y
T , θT , σT , φT ,Ω,Ψ, sT )

Conditional the other coefficients and the data,Ξ has an Inverse-Wishart posterior density with

scale matrixΞ−1
1 = (Ξ0 +

∑T
t=1 ∆ log σt(∆ log σt)

′)−1 and degrees of freedomdfΞ1
= dfΞ0

+ T

whereΞ−1
0 is the prior scale matrix anddfΞ0

the prior degrees of freedom. Draws are obtained as in

step 5.
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• Step 7: sample fromp(Ψ|yT , θT , σT , φT ,Ω,Ξ, sT ).

Conditional on the other coefficients and the data,Ψi has an Inverse-Wishart posterior density

with scale matrixΨ−1
i,1 = (Ψi,0+

∑T
t=1 ∆φi,t(∆φi,t)

′)−1 and degrees of freedomdfΨi,1
= dfΨi,0

+T

whereΨ−1
i,0 is the prior scale matrix anddfΨi,0

the prior degrees of freedom. Draws are obtained as

in step 5 for alli.

In the first estimation (the first out-of-sample forecast iteration), we make 12000 repetitions

discarding the first 10000 and collecting one out of five draws. In the other estimations, we initialize

the coefficients with the medians obtained in the previous estimation, and we make 2500 repetitions

discarding the first 500 and collecting one out of five draws.
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Tables

Table 2: Forecasting Accuracy over the sample: 1970-2007

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 2.15 1.13 1.08 1.03 1.15 1.01 0.86

1 quarter UR 0.15 1.00 1.08 1.00 0.99 1.18 1.02

IR 0.87 1.12 1.23 1.04 0.99 1.09 0.97

Avg. 1.08 1.13 1.02 1.04 1.09 0.95

π 2.24 1.17 1.03 0.88 1.37 1.22 0.62

1 year UR 1.07 1.03 1.24 1.01 0.67 0.91 0.78

IR 3.46 1.05 1.20 0.95 0.96 1.39 0.92

Avg. 1.08 1.16 0.95 1.00 1.17 0.77

π 3.06 1.19 1.13 0.93 1.6 1.38 0.66

2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.62

IR 7.54 1.05 1.18 0.92 0.99 1.44 0.88

Avg. 1.06 1.15 0.93 1.01 1.15 0.72

π 3.31 1.28 1.24 1.00 1.93 1.60 0.72

3 years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.59

IR 10.28 1.08 1.15 0.91 1.03 1.32 0.84

Avg. 1.07 1.17 0.92 1.14 1.26 0.72

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 3: Forecasting Accuracy over the sample: 1985-2007

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 20.93 2.61 1.19 1.21 1.29 1.35 0.98

1 quarter UR 0.05 2.80 1.16 1.07 1.09 1.17 1.02

IR 0.27 3.64 1.08 0.83 0.87 1.02 0.82

Avg. 3.02 1.14 1.04 1.08 1.18 0.94

π 0.45 5.76 1.54 1.16 2.22 2.64 0.91

1 year UR 0.37 3.00 1.15 0.82 0.97 1.23 0.88

IR 2.09 1.74 1.17 0.81 0.78 1.20 0.81

Avg. 3.50 1.29 0.93 1.32 1.69 0.87

π 0.57 6.39 2.09 1.08 3.03 3.11 0.77

2 years UR 1.33 1.72 0.86 0.56 0.42 0.72 0.57

IR 5.16 1.53 1.05 0.74 0.67 1.20 0.74

Avg. 3.21 1.33 0.79 1.37 1.68 0.69

π 0.92 4.61 2.10 0.86 3.47 2.51 0.52

3 years UR 2.25 1.22 0.72 0.43 0.35 0.73 0.50

IR 7.69 1.44 0.89 0.63 0.70 1.13 0.61

Avg. 2.42 1.24 0.64 1.51 1.46 0.54

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 4: Forecasting Accuracy over the sample: 1970-2007 (More Stringent Priors)

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 2.15 1.13 1.08 1.03 1.15 1.01 0.93

1 quarter UR 0.15 1.00 1.08 0.99 0.99 1.18 0.96

IR 0.87 1.12 1.23 1.04 0.99 1.09 0.94

Avg. 1.08 1.13 1.02 1.04 1.09 0.94

π 2.24 1.17 1.03 0.89 1.37 1.22 0.74

1 year UR 1.07 1.03 1.24 1.01 0.67 0.91 0.70

IR 3.46 1.05 1.20 0.96 0.96 1.39 0.90

Avg. 1.08 1.16 0.95 1.00 1.17 0.78

π 3.06 1.19 1.13 0.93 1.60 1.38 0.79

2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.50

IR 7.54 1.05 1.18 0.93 0.99 1.44 0.85

Avg. 1.06 1.15 0.94 1.01 1.15 0.71

π 3.31 1.28 1.24 1.01 1.93 1.60 0.86

3 years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.48

IR 10.28 1.08 1.15 0.92 1.03 1.32 0.81

Avg. 1.07 1.17 0.93 1.15 1.26 0.72

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.). In this estimation we setλ1 = 0.00001, λ2 = 0.001 and λ3 = 0.00001.
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Table 5: Forecasting Accuracy over the sample: 1985-2007 (More Stringent Priors)

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 0.93 1.19 1.19 1.21 1.29 1.35 1.02

1 quarter UR 0.05 1.07 1.16 1.07 1.09 1.17 0.99

IR 0.27 0.98 1.08 0.84 0.87 1.02 0.83

Avg. 1.08 1.14 1.04 1.08 1.18 0.95

π 0.45 1.20 1.54 1.16 2.22 2.64 0.93

1 year UR 0.37 0.81 1.15 0.82 0.97 1.23 0.86

IR 2.09 0.89 1.17 0.82 0.78 1.20 0.79

Avg. 0.97 1.28 0.93 1.32 1.69 0.86

π 0.57 1.18 2.09 1.07 3.03 3.11 0.82

2 years UR 1.33 0.53 0.86 0.56 0.42 0.72 0.50

IR 5.16 0.80 1.05 0.77 0.67 1.20 0.69

Avg. 0.84 1.33 0.80 1.38 1.68 0.67

π 0.92 0.92 2.10 0.85 3.47 2.51 0.60

3 years UR 2.25 0.40 0.72 0.43 0.35 0.73 0.42

IR 7.69 0.74 0.89 0.67 0.70 1.13 0.55

Avg. 0.69 1.24 0.65 1.50 1.46 0.52

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.). In this estimation we setλ1 = 0.00001, λ2 = 0.001 and λ3 = 0.00001.
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Table 6: Forecasting Accuracy over the sample: 1970-2007 (with Explosive Draws)

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 2.15 1.13 1.08 1.04 1.15 1.01 0.86

1 quarter UR 0.15 1.00 1.08 0.99 0.99 1.18 1.02

IR 0.87 1.12 1.23 1.05 0.99 1.09 1.01

Avg. 1.08 1.13 1.03 1.04 1.09 0.96

π 2.24 1.17 1.03 0.89 1.37 1.22 0.64

1 year UR 1.07 1.03 1.24 1.00 0.67 0.91 0.80

IR 3.46 1.05 1.20 0.98 0.96 1.39 1.01

Avg. 1.08 1.16 0.96 1.00 1.17 0.82

π 3.06 1.19 1.13 0.95 1.60 1.38 0.76

2 years UR 2.39 0.95 1.14 0.95 0.45 0.63 0.68

IR 7.54 1.05 1.18 0.97 0.99 1.44 1.07

Avg. 1.06 1.15 0.96 1.01 1.15 0.84

π 3.31 1.28 1.24 1.02 1.93 1.60 0.92

3 years UR 3.22 0.85 1.12 0.86 0.47 0.85 0.72

IR 10.28 1.08 1.15 0.98 1.03 1.32 1.21

Avg. 1.07 1.17 0.95 1.15 1.26 0.95

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Table 7: Forecasting Accuracy over the sample: 1985-2007 (with Explosive Draws)

Horizons Series Naı̈ve AR-REC AR-ROL TV-AR VAR-REC VAR-ROL TV-VAR

(MSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE) (RMSFE)

π 0.93 1.19 1.19 1.21 1.29 1.35 0.99

1 quarter UR 0.05 1.07 1.16 1.07 1.09 1.17 1.04

IR 0.27 0.98 1.08 0.85 0.87 1.02 0.86

Avg. 1.08 1.14 1.04 1.08 1.18 0.96

π 0.45 1.20 1.54 1.16 2.22 2.64 0.93

1 year UR 0.37 0.81 1.15 0.82 0.97 1.23 0.92

IR 2.09 0.89 1.17 0.85 0.78 1.20 0.91

Avg. 0.97 1.28 0.94 1.32 1.69 0.92

π 0.57 1.18 2.09 1.08 3.03 3.11 0.80

2 years UR 1.33 0.53 0.86 0.56 0.42 0.72 0.63

IR 5.16 0.80 1.05 0.81 0.67 1.20 0.88

Avg. 0.84 1.33 0.82 1.38 1.68 0.77

π 0.92 0.92 2.10 0.86 3.47 2.51 0.56

3 years UR 2.25 0.40 0.72 0.43 0.35 0.73 0.65

IR 7.69 0.74 0.89 0.75 0.70 1.13 0.88

Avg. 0.69 1.24 0.68 1.50 1.46 0.70

First column, horizons; second column, series; third column MSFE ofnäıve models; other columns, relative MSFE,
that is, ratio of the MSFE of a particular model to the MSFE of the näıve model. For each horizon is also reported the
average of the relative MSFE across variables (Avg.).
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Figure

Figure 1: Time Varying Parameters (TV-VAR model)
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Figure 2: Time Varying Stochastic Volatility (TV-VAR model)
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Figure 3: Three Years Ahead Forecast
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