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Abstract 
 

In this paper we measure and evaluate the performance of a number 

of Value-at-Risk (VaR) methods using a portfolio which is based on the 

foreign exchange exposure of a small open economy (Ireland) among its 

key trading partners.  A number of recent studies have compared the 

various methods of measuring risk, however, we are primarily concerned 

with the evaluation of these methods. The sample period highlights the 

changing nature of Ireland’s exposure to risk over the past decade in the 

run-up to EMU.  The novel aspect of our analysis is that we measure the 

portfolio risk faced by firms (e.g. banks, exporters) using new risk 

management techniques. Our results will offer an indication as to the level 

of accuracy of the various approach’s and discuss the issues of models 

ensuring statistical accuracy or more conservative leanings. The approach 

we will adopt is based on the Value-at-Risk models. We investigate the two 

central VaR modelling methodologies, parametric and non-parametric 

analysis. Results based on recently developed evaluation techniques would 

appear to suggest that the Orthogonal GARCH model is the most accurate 

methodology while the exponentially weighted moving average (EWMA) 

specification is the more conservative approach.  
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1.0 :  Introduction 

Over the past decade the growth of trading activity in financial markets, 

numerous instances of financial instability, and a number of widely publicised 

losses on banks' trading books have resulted in a re-analysis of the risks faced, and 

how they are measured.  The most widely advocated approach to have emerged to 

measure market risk is that of Value-at-Risk (VaR).  VaR is an estimate of the 

largest loss that a portfolio is likely to suffer, i.e. the potential loss faced by the 

firm.  This paper outlines the alternative approaches to measuring VaR that exist.  

In the context of assessing Ireland’s foreign exchange exposure among its key 

trading partners, we discuss the standard variance-covariance approach, an 

Exponentially Weighted Average technique, an Orthogonal Generalised 

Autoregressive Conditional Heteroscedasticity specification and the historical 

simulation methodology.  The Irish context is of particular interest since as a small 

open economy not only does it have a high reliance on trade, in fact, over the 

period examined, trade accounted for over 120% of GDP, but also it has been 

affected by the move towards EMU. 

Under the 1997 Amendment to the Basle Accord and the second Capital 

Adequacy Directive (CAD) adopted by the European Union, banks are able to seek 

approval for the adoption of their own in-house VaR models in order to calculate 

the minimum regulatory required capital to cover their market risks1.  Given that 

banks are permitted to develop differing VaR models, it is necessary for 

supervisory bodies to be able to assess the relative performance of these alternative 

models.  This issue is highlighted by Hendricks and Hirtle (1997, pp. 8-9): 

“The actual benefits to be derived from the VaR estimates depend crucially 

on the quality and accuracy of the models on which the estimates are based.  To the 

extent that these models are inaccurate and misstate the banks’ true risk exposures, 

then the quality of the information derived from any public disclosure will be 

degraded.  More important, inaccurate VaR models or models that do not produce 

consistent estimates over time will undercut the main benefit of a models-based 

                                                 
1  Likewise regulatory authorities in the US and Australia have adopted the market risk amendment to the 

Basle Capital Accord. 
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capital requirement: the closer tie between capital requirements and true risk 

exposures.  Thus, assessment of the accuracy of these models is a key concern and 

challenge for supervisors.” 

Engel and Gizycki (1999) identify three banners under which such decisions 

can be made.  These are conservatism, accuracy and efficiency.  Supervisory bodies 

are not only concerned with the accuracy of potential models but also the level of 

conservatism regarding the estimated measure of risk.  A conservative model can 

be defined as one that produces consistently high estimates of risk relative to other 

models. In addition, firms are concerned with model efficiency.  They wish to 

adopt VaR models that will both satisfy capital adequacy requirements and thus be 

sufficiently conservative to please the supervisors and minimise the level of capital 

reserves that must be held.  Furthermore, it is of interest to firms to be able to 

evaluate the performance of contesting models prior to adoption of any one model.  

It will be expensive in terms of both time and money for a firm to change, once any 

one model has been adopted as best practice within the firm.  Over recent years the 

range of techniques available to risk managers has increased vastly, therefore the 

decision of which methodology to adopt is no longer straightforward, the many 

alternative approaches should all be considered.  

The sample studied (1990-1998) represents a period where the foreign 

exchange rate risk represented an important part risk.2 This research represents the 

first part of a comprehensive study which will analyse the risks faced by 

firms/banks in the Irish market. The study focuses on the foreign exchange market, 

which was certainly faced with a high degree of volatility over the early part of the 

study period.3  A second reason for focusing on the foreign exchange rate market is 

that we have a linear relationship and so eases comparison of the various models. 

The importance of the differing techniques has been the topic of a number of recent 

finance papers, however, this is the first known study to explicitly consider the 

                                                 
2  During the 1990’s derivative trading grew dramatically, the bulk of which, in the case of Ireland, was in 

the forward foreign exchange area, (see Browne, Fell and Hughes, 1994).   
3  Although the adoption of the euro will reduce substantially the degree of foreign exchange risk exposure 

faced by banks and exporters, there are still risks associated with important trade partners outside the 
euro, i.e. US and the UK. 
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problem in the context of a small open economy and the impact of impending 

monetary union.4 

The paper adopts six different models based on those mentioned earlier to 

generate VaR forecasts using four different holding periods.  The accuracy of these 

forecasts are then analysed using three differing evaluation processes.  Firstly, we 

adopt two measures of relative size and variability developed by Hendricks (1996).  

Secondly, we then use interval forecasts proposed by Christoffersen (1998).  The 

framework is independent of the model process generating the VaR forecasts and 

captures whether a particular model exhibits correct conditional coverage.  As such 

the VaR forecasts should be small in periods exhibiting low volatility and larger in 

more volatile periods.  Occasions when the loss actually exceeds the VaR forecast, 

known as a failure or exception, should therefore be spread across the sample and 

not appear in clusters.  A model which does not capture the volatility dynamics of 

the underlying return distribution will exhibit a clustering of exceptions but may 

still exhibit correct unconditional coverage.  Finally we adopt the loss function 

approach of Lopez (1999).  The functions are defined to produce higher values 

when exceptions occur.  In this paper we adopt two functions, a basic binary loss 

function which in a sense equivalent to the Christoffersen test of correct 

unconditional coverage, and a quadratic loss function which takes into account the 

magnitude of the exception.  We find that of the models considered the 

Exponentially Weighted Moving Average (EWMA) model with a weighting of 

0.94 performs best according to the evaluation statistics. 

2.0:  Methodology 

In this paper we analyse different aspects of the VaR methodology using a 

number of foreign exchange portfolios.  The VaR measure provides an estimate of 

the potential loss on a portfolio that would occur given relatively large adverse 

price movements.  Assuming that over a given time period, the composition of the 

portfolio remains unchanged, the VaR statistic is a one-sided confidence interval on 

portfolio losses, such that: 

                                                 
4  See, inter alia, Engel and Gizycki (1999), Hendricks (1996) and Jackson, Maude and Perraudin (1998). 
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α=<∆∆∆ )),(Pr( VaRtxP      (1) 

This simply states that the probability that the change in the value of the 

portfolio, ∆P, (which is a function of the holding period, ∆t, and changes in the 

prices of assets held in the portfolio, ∆x) is less than the Value-at-Risk is equal to 

the significance level α.  Figure one shows the Value-at-Risk for the distribution of 

returns calculated using a confidence interval of 99%, i.e. a significance level, α, of 

1%.  Throughout our analysis the holding period is set at one day.  However, we 

adopt one of four horizons for the estimation period of the variance covariance 

matrix.  They are 50 days, 125 days, 250 days and 500 days or approximately two 

months, six months, one year and two years.  Furthermore, by adopting similar 

horizons to the previous literature, Hendricks (1996) and Engel and Gizycki (1999), 

our results will be directly comparable.  In addition, we set two significance levels, 

namely 1% and 5%.  For these differing combinations we then assess the 

performance of differing forecasting models, adopting both parametric and non-

parametric methodologies.  The sensitivity of the results gained from these 

differing approaches are of interest and importance for regulators and other end-

users of Value-at-Risk. 

The adoption of a portfolio of foreign exchange positions means that we 

have a linear relationship and we therefore can concentrate solely on the relative 

merits of different forecasting techniques, rather than the assumptions regarding 

any non-linear relationships.  Furthermore, throughout our analysis, we assume that 

expected returns on the assets are zero.  Gizycki and Hereford (1998) find that 

many banks adopt zero means for their own in-house VaR calculations, while 

Jackson et al. (1997) claim that poorly determined estimates of the mean will 

reduced the efficiency of the variance covariance matrix estimated for use in the 

VaR. 

The first two models that will be considered are parametric approaches.  

These are the variance-covariance approaches which assume normality and serial 

independence.  The equally weighted variance-covariance method places equal 

significance on each observation in the forecast horizon window, while the 

exponentially weighted moving average method allows for greater emphasis to be 
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placed on more recent observations.  For both approaches, we can define Rt as the 

matrix of returns on the currencies, and Σt as the variance covariance matrix of Rt.  

In addition, we can define a vector of sensitivities, δ, which measure the measure 

the sensitivity of the portfolio to changes in risk factors.  The change in portfolio 

value is then: 

),0( δδ Σ′∼∆ NP       (2) 

Which solving for the Value-at-Risk gives:  

δδα Σ′−= )(ZVaR       (3) 

Where Z(α) is the 100αth percentile of the standard normal distribution, 

such that if α is 99 then Z(α) is 2.33. 

The two approaches that are adopted in this study estimate the variance 

covariance matrix in the following way:  using the equally weighted approach, the 

variance covariance matrix is estimated by: 

∑
−

=
−−+ ′=Σ

1

0
1

1ˆ
T

s
ststt RR

T
      (4) 

However if the variance covariance matrix varies over time, then relatively 

old observations should be ignored, the emphasis being placed on recent data.  The 

exponentially weighted moving average approach defines a weight λ, known as the 

“decay factor”, which allows for greater importance to be placed upon more recent 

observations when calculating the variance covariance matrix.  In this study we 

adopt three different values for λ, 0.99, 0.97 and 0.94.  The lower the value of λ, 

the greater the weight placed upon more recent events.  Using the exponentially 

weighted moving average approach, the variance covariance matrix is estimated by: 
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While the exponentially weighted moving average model captures volatility 

clustering, a richer description of behaviour is provided by the Generalised 

Autoregressive Conditional Heteroscedasticity (GARCH) models proposed by 

Bollerslev (1986).  These models allow for both autoregressive and moving average 

behaviour in variances and covariances. e.g. the univariate zero-mean GARCH(1,1) 

model has the form: 

222
1 ttt R βσαωσ ++=+      (6) 

where the parameters ω, α and β are estimated using quasi maximum 

likelihood methods.   

Alexander (2001) states that evidence suggests that long-term forecasts are 

more realistic when generated by GARCH models as opposed to exponentially 

weighted moving average models. Additionally, Alexander and Leigh (1997) 

analyse the performance of Value-at-Risk models using the equally weighted 

average, the exponential weighted average and the GARCH approach.  They 

provide mixed evidence on the competing methodologies.  They find that while the 

exponentially weighted moving average approach is the most accurate at predicting 

the centre of the distribution, the tails, and therefore the VaR measure may be too 

low.  Thus, although the exponentially weight moving average approach may be the 

most accurate it is the GARCH and equally weighted methodologies which are 

superior operationally. 

In a multivariate setting, for any element of the full variance covariance 

matrix we can express the time dependent nature of the formulation as: 

( )tijtjtitij RRf ,,,1, ,, σσ =+   ji,∀    (7) 

However, the number of parameters to be estimated in such GARCH 

models means that as the number of risk factors increases then computation rapidly 
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becomes intractable.5  There have subsequently been a number of developments in 

the literature aimed at circumventing this problem.6  Engle and Kroner (1995) 

proposed the BEKK formulation which has been widely adopted in empirical work 

as a tractable methodology.  However, the number of parameters to be estimated 

can still be large and interpretation of the parameter coefficients is difficult.  Engle 

(2000) developed a new class of models, Dynamic Conditional Correlation (DCC) 

multivariate GARCH, which reduces further the number of parameters to be 

estimated.  Further analysis of this approach is provided by Engle and Sheppard 

(2001).  However, in this study, we adopt a solution proposed by Engle, Ng and 

Rothschild (1990) which exploits factor analysis to enable a small number of 

factors to describe a high proportion of the structure of the variance covariance 

matrix.  This concept was initially extended by Alexander and Chibumba (1998) 

who propose an ‘orthogonal’ GARCH model.  Firstly their approach orthogonalises 

the risk factors.  These orthogonal risk factors are known as the ‘principle 

components’.  Since these are, by definition, orthogonal to each other, we no longer 

need to measure the covariances, substantially reducing the number of parameters 

needing to be estimated.  The approach developed further by Alexander (2000, 

2001, 2002) can be outlined as follows: 

Define the matrix R (T by k) to contain the full set of historical returns.  Let 

W (k by k) be the matrix of eigenvectors of R’R.  The orthogonal principle 

components are then the columns [ ]kPP K1  of: 

[ ] RWPPP k == K1       (8) 

Solving for R and using the property of W that its inverse is equal to its 

transpose, it is possible to write the change of in risk factor I as a linear 

combination of the principle components where the weights by the elements of the 
thi eigenvector: 

                                                 
5  As noted by Alexander (2002, p.38) “the implementation of these models in more than a few dimensions 

is extremely difficult: because the model has very many parameters, the likelihood function becomes 
very flat, and consequently the optimization of the likelihood function become practically impossible.” 

6  A discussion of the development of multivariate GARCH models is provided by Engle and Sheppard 
(2001). 
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      WPR ′=        (9) 

kikiii PPPR ωωω +++=⇒ K2211  

The estimate of Σt is then given by: 

WPWt ′=Σ )var(ˆ       (10) 

Note that only the eigenvectors of R’R, and the diagonal elements of var(P) 

need to be estimated to obtain tΣ̂ .  More importantly, each of the principal-

component variances can be modelled independently, in a univariate setting, using 

a GARCH framework. 

Engle (2000) evaluates the performance of these three alternative 

multivariate GARCH methodologies.  While he concludes that his DCC model 

performs best, he finds that the O-GARCH formulation performs very well in the 

majority of tests, with both models clearly outperforming the BEKK specifications. 

Non parametric estimation allows for the adoption of modelling approaches 

that make no assumptions regarding the statistical distribution of the returns data.  

Figure two highlights the difference in the distribution of returns between a normal 

distribution and a distribution which is characterised by excess kurtosis, i.e. fat 

tails.  Exchange rate returns are characterised by excess kurtosis.  If this is indeed 

the case, then adopting a VaR estimated assuming a normal distribution will result 

in an under estimation of the 'true' VaR in the presence of fat tails.  Using a non 

parametric approach allows us to analyse whether exchange rate returns are best 

characterised by a normal distribution or otherwise.  The most widely used 

approach is that of Historical Simulation (HS).  This technique uses past price 

movements to calculate a hypothetical distribution of returns on the current 

portfolio.  This provides a series of changes in portfolio value that would have been 

realised had the current portfolio been held over the period in question.  The Value-

at-Risk is then set equal to the percentile of the return distribution given a required 

level of confidence. 
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3.0:  Model Evaluation  

There is no definitive measure of VaR model performance, thus in order to 

evaluate the performance of the competing models, we present a variety of different 

metrics which provide an indication of model performance. 

Firstly we considered the variability in the VaR estimates produced by the 

different models.  This enables us to assess whether a particular model produces 

higher risk estimates relative to the other models.  Such a model, which consistently 

yields a higher VaR measure, would be regarded as being conservative. 

Secondly, we attempt to capture the accuracy of the different models by 

evaluating the extent to which the proportion of losses that exceed the VaR estimate 

is consistent with the models’ stated confidence level. 

3.1:  Measures of Relative Size and Variability 

To assess the relative size of the VaR estimates produced by the various 

models we apply the mean relative bias statistic developed by Hendricks (1996).  

This statistic captures the extent to which different models produce estimates of 

similar average size.  Given T time periods, and N VaR models, the mean relative 

bias of any model i is calculated as: 

∑
=

−=
T

t t

tit
i VaR

VaRVaR
T

MRB
1

1   where ∑
=

=
N

i
itt VaR

N
VaR

1

1  (11) 

Hendricks (1996) extends the simple mean relative bias statistic to capture 

the variability of the model estimates, in addition to the extent to which the model 

average differs from the average of all models.  This measure, known as the root 

mean squared relative bias, is calculated as: 
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3.2:  Interval Forecasts 

Christoffersen (1998) has designed a three step procedure for the evaluation 

of interval forecasts: a test for “unconditional coverage”, a test for “independence” 

and a test for “conditional coverage”.  All three tests are performed using the 

likelihood ratio framework.  The test for unconditional coverage tests a null 

hypothesis that the probability of failure or exception, i.e. the VaR forecast is 

exceeded, is p against an alternative that the probability differs from p assuming the 

failure process is independently distibuted. 

The test is calculated as: 

 
( )
( )

2
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uc 01

01

1
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~
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
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where: 
p is the desired significance level, i.e. one minus the VaR confidence level. 

0n  is the number of times in the sample when the VaR forecast is not exceeded. 

1n  is the number of times in the sample when the VaR forecast is exceeded. 

10

1

nn
n
+

=π̂  

 
However a poor interval forecast may still produce correct unconditional 

coverage but not capture the higher-order dynamics of the series.  Although the test 

for correct unconditional coverage can be utilised to penalise firms it does not 

capture asymmetries or leverage effects which will affect the accuracy and 

efficiency of any forecasts. 

The test for independence tests the hypothesis that the failure process is 

independently distributed against an alternative that the process follows a first order 

Markov process.  The test is calculated as: 
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where: 

ijn  = number of i values followed by a j value in the series, 10ji ,, =  
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A tighter requirement is that a VaR model provides correct “conditional” 

coverage.  If a VaR model has the ability to capture the conditional distribution of 

returns and its dynamic properties such as time varying volatility accurately, then 

exceptions should be unpredictable.  The importance of testing “conditional” 

coverage stems from the observation that the majority of financial time series 

exhibit volatility clustering.  As a consequence, superior interval forecasts should 

be narrow during tranquil periods and in volatile periods such that exceptions are 

spread across a sample and do not appear in clusters.  The test for correct 

conditional coverage is calculated as: 
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3.3:  Measures of Accuracy 

Lopez (1999) proposes a regulatory loss function in order to assess the 

accuracy of the VaR estimates.  The general form of the loss function for bank i at 

time t is: 

  
( )
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where f( ) and g( ) are functions that satisfy f( ) ≥ g( ) and P∆  represents the 

realised profit or loss.  In this paper we consider two specific loss functions – a 
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binary loss function which takes account of whether any given days loss is greater 

or smaller than the VaR estimate and a quadratic loss function which also takes 

account of the magnitude of the losses that exceed the VaR estimate. 

The binary loss function treats any loss larger than the VaR estimate as an 

‘exception’.  Thus we are concerned with the number of exceptions rather than the 

magnitude of these exceptions. Each loss which exceeds the VaR is assigned an 

equal weight of unity, while all other profits and losses have a zero weight. i.e. 

 




≥∆
<∆

=
+

+
+

titi

titi
ti VaRP

VaRP
L

,1,

,1,
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If the VaR model is truly providing the level of coverage defined by its 

confidence level, then the average binary loss function over the full sample will be 

equal to 0.05 for the 95% VaR estimate and 0.01 for the 99% VaR estimate. 

The quadratic loss function takes account of the magnitude of the exception.  

Lopez (1999) found that the quadratic loss functions use of the additional 

information embodied in the size of the exception provided a more powerful 

measure of the model accuracy than the binary loss function.  In addition to taking 

account of the magnitude of the exception, the application of the quadratic 

functional form penalises large exceptions more severely than a linear or binary 

measure.  The quadratic loss function is defined as: 
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Sarma et al (2000) suggest that a loss function of the form above captures the 

goals of the financial regulator, referring to it as a regulatory loss function. 

4.0 :  Data and Empirical Results 

The data used in the construction of the portfolio are foreign exchange data 

from 4th January 1990 to 17th December 1998 provided by the Bank of Ireland, it 

consists of daily exchange rates against the Irish Punt for the following six 
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currencies, UK sterling, US dollar, Italian lira, Dutch guilder, French franc and 

German deutschemark.  We estimate all the models from 11th February 1992 

onwards (a sample of 1785 days) to allow for the largest window horizon of 500 

days. The sample under investigation includes both the highly volatile period of the 

early 1990’s, culminating in the currency crisis of 1992, and the run up to EMU.  

We also analyse the performance of the models over a shorter time period, 1st July 

1993 to 17th December 1998, (a sample of 1425 days) which removes the 1993 

devaluation of the punt.7 

Table 1 presents some descriptive statistics for each of these returns while 

figures 3a - 3f plot the returns series for all six currencies.  Volatility clustering 

would appear to be evident from each of the exchange rate series and the 10% 

devaluation in the Irish Punt which occurred on January 30th 1993 can clearly be 

seen in all series. 

Figures 4a and 4b show the estimated VaR using the standard variance 

covariance (VCV) approach and the actual returns for the 50 day estimation 

window and the 500 day window respectively.8  It can clearly be seen that shorter 

estimation windows are prone to swings in the data as results rely solely on recent 

events, allowing estimates to capture the volatility of the market.  The VaR 

estimates using a longer window length are more stable.  The larger window sizes 

essentially treat the series as homoscedastic, i.e. tσ  varies negligibly and the VaR 

estimates remain stable.  Next we compare the estimated VaR using the 

exponentially weighted moving average (EWMA) variance covariance approach 

for λ equal to 0.94.9  It can clearly be seen, see figures 5a and 5b, that the series 

generated with λ = 0.94 is almost entirely dependent upon recent observations and 

is therefore highly variable. 

We now compare the standard techniques with two alternatives, a 

parametric approach, the Orthogonal GARCH (O-GARCH) specification, and a 

                                                 
7  We would like to thank an anonymous referee for this suggestion. 
8  The charts presented show the results from using the 50 day and 500 day windows, i.e. the two extremes 

in this study.  The findings for the 125 and 250 day windows lie between these two.  These results are 
available from the authors on request. 

9  We also ran the VaR for λ = 0.99 and 0.97, results available from the authors on request. 
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non-parametric approach, the historical simulation methodology.  The results for 

the O-GARCH approach would appear to be much more responsive to the swings 

in the data, see figures 6a and 6b.  The VaR estimates produced by the O-GARCH 

model seem to have greater accuracy than those produced by the other parametric 

approaches.  We also look at a non-parametric approach, historical simulation, to 

compare the results.  Although this procedure has the added advantage of dropping 

the normality assumption, the results would appear to be relatively poor, see figures 

7a and 7b. 

As can be seen there is no definitive measure of VaR model performance, 

thus in order to evaluate the performance of the competing models, we present 

some metrics that provide an indication of model performance.  The Mean Relative 

Bias (MRB) and Root Mean Squared relative Bias (RMSRB) statistics are 

presented in tables 2 and 3.  Sections a and b show the mean relative bias and root 

mean squared relative bias statistics for the 95% and 99% VaR. The results show 

that there is some degree of variation between the competing models, e.g. at the 500 

day horizon the mean relative bias statistics fall between 15 (the VCV model) and –

11 per cent (the HS approach) highlighting that of the approaches considered, the 

VCV and HS models are the least accurate.  The EWMA (λ=0.94) model remains 

very close to the mean over all horizons and the O-GARCH model also performs 

well.  The root mean squared relative bias statistics support these initial findings, 

showing that the EWMA (λ=0.94) model again varies little in magnitude from the 

average risk estimate.  However the O-GARCH suffers due to the relative 

conservatism of this average figure.10 

The results of the interval forecast analysis are reported in tables 4 (95% 

VaR) and 5 (99% VaR).  It can be seen that while a number of models (e.g. 50 day 

VCV) may produce correct unconditional coverage they do not exhibit correct 

conditional coverage.  Again the likelihood ratio tests show that the performance of 

the O-GARCH and EWMA (λ=0.94) models tends to be superior to the other 

                                                 
10 The O-GARCH model may be more accurate than the EWMA models.  However, since the EWMA 

models are close to the mean, the measured RMSRB statistic punishes models for deviating from the 
mean, even if this is due to greater accuracy. This is supported by the results of the sample omitting the 
devaluation. 
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contenders.  However the EWMA (λ=0.94) model edges the O-GARCH model 

given the null can be rejected for the LR tests in only 7 cases compared with 11 

cases. 

We finally look at the results using the previously discussed Lopez (1999) 

loss functions. The results given by both the binary loss function and the quadratic 

loss function are reported in tables 2c and 2d and tables 3c and 3d.  The 

performance of each of the models is broadly similar according to both functions, 

although the O-GARCH model and the EWMA (λ=0.94) seem to out perform the 

other competing specifications.   

When we analyse the models over the shorter sample period, omitting the 

1993 devaluation, we find the evaluation statistics improve significantly for the O-

GARCH model.  The evaluation statistics are reported in tables 6 and 7. These 

results clearly show that the statistics for the full sample period suffer due to the 

devaluation. While the O-GARCH specification captures the devaluation accurately 

it is penalised because in doing so it moves away from the mean. Once the large 

devaluation is omitted from the sample, the statistics suggest that the O-GARCH is 

the most appropriate model.  However, the tests of conditional coverage, reported 

in tables 8 and 9, still marginally favour the EWMA (λ=0.94) specification over the 

O-GARCH even with the shorter sample. 

Overall, the results of the evaluation of model accuracy would appear to be 

consistent with the graphical evidence.  There is clearly a trade off between 

accuracy and conservatism.  The O-GARCH specification clearly generates the 

most accurate VaR estimates, however, it is the least conservative approach.  

Alternatively, the EWMA (λ=0.94) model is more conservative but is less accurate.  

These methodologies are superior to the others considered here, furthermore we 

would contend that from a viewpoint of striking a balance between conservatism 

and accuracy the EWMA (λ=0.94) specification should be the preferred choice, due 

to its performance in the tests of conditional coverage. 
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5.0 :  Conclusions 

Given that banks can now adopt their own in-house models, it has become 

important to assess the relative performance of the various models.  The importance 

of the differing techniques has been a topic of a number of recent finance papers, 

however this is the first known study explicitly taking into consideration the issues 

from an Irish perspective. Given the historical (and continued) importance of 

foreign exchange rate risk to a small open economy like Ireland, we have focused 

primarily on the measurement and evaluation of this form of risk. In this study we 

compare a number of methodologies for estimating Value-at-Risk that have proved 

popular.  Specifically, we consider the standard variance covariance approach, the 

exponential weighted moving average (EWMA) approach, the Orthogonal GARCH 

specification, and historical simulation methodology. 

Using an equally weighted portfolio of foreign exchange positions in the 

currencies of Ireland’s six major trading partners, we calculate the Value-at-Risk on 

the portfolio via each approach.  Each methodology is used to estimate the one day 

VaR using a variance covariance estimated with a window of 50, 125, 250 and 500 

days.  We then adopt recently developed techniques which enable the evaluation of 

the performance and accuracy of these estimates.  These evaluation tests are of 

crucial importance for both the bank/firm and the supervisory bodies. The results 

from the accuracy tests would appear to be consistent with the graphical evidence, 

in that the EWMA (λ=0.94) and O-GARCH would appear to outperform the other 

models under consideration.  We find that the O-GARCH model generates the most 

accurate VaR measures, however we argue that the EWMA (λ=0.94) is the most 

appropriate model.  Both the O-GARCH specification and the EWMA (λ=0.94) 

approach provide VaR estimates that have greater accuracy and would improve 

efficiency for those needing to comply with capital adequacy requirements.  

However, the EWMA (λ=0.94)  is also acceptable to policy makers and supervisory 

bodies who may wish to impose a model that produces more conservative estimates 

than the O-GARCH approach. Although highly important in the case of Ireland, 

foreign exchange rate risk represents the simplest component of market risk. In 

future research we hope to analyse more complex issues such as yield curve 
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structures that must be considered for interest rate markets and issuer specific risk 

for equity markets.  
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Figure 1 : Value at Risk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 : Normal and Fat Tails 
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 Mean ( x10-3) Standard Deviation Maximum Minimum 

UK Sterling -0.0261 0.0040 0.0465 -0.0620 
US Dollar 0.0058 0.0064 0.0336 -0.0837 
Italian Lira 0.1051 0.0046 0.0593 -0.0745 
Dutch Guilder -0.0198 0.0034 0.0324 -0.0698 
French Franc -0.0258 0.0037 0.0247 -0.0707 
German Mark -0.0195 0.0033 0.0220 -0.0694 

 
Table 1 
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Figure 3a: UK     Figure 3b: US 
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Figure 3c: Italy     Figure 3d: Netherlands 
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Figure 3e: France     Figure 3f: Germany 



 25

 
 

Figure 4:  Actual Returns versus VaR Estimates: Variance Covariance Estimates 
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4a:  50 day window 
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4b:  500 day window 
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Figure 5:  Actual Returns versus VaR Estimates: Exponentially Weighted Average 

Estimates 
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5a:  λ = 0.94 – 50 day window 
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5b:  λ = 0.94 – 500 day window 
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Figure 6:  Actual Returns versus VaR Estimates: Orthogonal GARCH Estimates 
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6a:  50 day window 
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6b:  500 day window 
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Figure 7:  Actual Returns versus VaR Estimates: Historical Simulation Estimates 
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7a:  50 day window 
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7b:  500 day window 
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Tables 2a – 2d:  Evaluation statistics – 95% VaR 

 
 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1472 0.1085 0.0915 0.2272 0.1128 0.2625 0.1533 0.3193 
0.99 -0.2863 0.0552 -0.0899 0.1268 0.0246 0.1465 0.0750 0.1843 
0.97 0.0032 0.0711 0.0362 0.0852 0.0054 0.1225 -0.0062 0.1490 
0.94 0.1066 0.1319 0.0213 0.1711 -0.0262 0.1883 -0.0409 0.1911 
OGar 0.0569 0.2279 0.0179 0.3357 -0.0278 0.3537 -0.0695 0.3696 
HS -0.0275 0.2163 -0.0770 0.2161 0.1755 0.1717 -0.1116 0.2388 

Table 2a:Mean Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1828 0.0539 0.2449 0.1766 0.2857 0.1402 0.3541 0.1640 
0.99 0.2916 0.0325 0.1554 0.0416 0.1485 0.0524 0.1989 0.0925 
0.97 0.0712 0.0165 0.0925 0.0172 0.1226 0.0255 0.1491 0.0356 
0.94 0.1696 0.0629 0.1724 0.0648 0.1900 0.0726 0.1954 0.0767 
OGar 0.2348 0.3092 0.3361 0.5075 0.3547 0.5405 0.3759 0.5223 
HS 0.2180 0.0922 0.2294 0.0936 0.2455 0.0554 0.2634 0.0113 

Table 2b:Root Mean Squared Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.0470 0.2118 0.0431 0.2032 0.0386 0.1928 0.0358 0.1859 
0.99 0.1148 0.3188 0.0622 0.2415 0.0420 0.2006 0.0375 0.1901 
0.97 0.0610 0.2395 0.0426 0.2019 0.0403 0.1967 0.0403 0.1967 
0.94 0.0470 0.2118 0.0392 0.1941 0.0392 0.1941 0.0392 0.1941 
OGar 0.0448 0.2069 0.0336 0.1802 0.0381 0.1914 0.0370 0.1887 
HS 0.0711 0.2571 0.0560 0.2300 0.0532 0.2245 0.5655 0.2310 

Table 2c:Binary Loss Function 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1434 1.9926 0.1337 1.7680 0.1236 1.6368 0.1153 1.5495 
0.99 0.2135 1.7817 0.1570 1.7938 0.1331 1.7928 0.1276 1.7928 
0.97 0.1658 2.1238 0.1441 2.1284 0.1416 2.1286 0.1416 2.1286 
0.94 0.1593 2.4786 0.1488 2.4778 0.1488 2.4778 0.1488 2.4778 
OGar 0.0967 0.7607 0.0728 0.5406 0.1636 3.7709 0.0697 0.4862 
HS 0.1579 1.5266 0.1426 1.5178 0.1374 1.4689 0.1398 1.4384 

Table 2d:Quadratic Loss Function 
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Tables 3a – 3d:  Evaluation statistics – 99% VaR 

 
 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1421 0.1116 0.0741 0.2219 0.0864 0.2559 0.1230 0.3034 
0.99 -0.2895 0.0577 -0.1043 0.1234 0.0004 0.1403 0.0496 0.1734 
0.97 -0.0012 0.0749 0.0201 0.0859 -0.0178 0.1219 -0.0272 0.1594 
0.94 0.1018 0.1337 0.0059 0.0023 -0.0479 0.1885 -0.0602 0.2043 
OGar 0.0521 0.2267 0.0023 0.3314 -0.0491 0.3518 -0.1017 0.3326 
HS -0.0054 0.2443 0.0019 0.2332 0.0281 0.2565 0.0164 0.2724 

Table 3a:Mean Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1807 0.0549 0.2339 0.1672 0.2700 0.1377 0.3272 0.1462 
0.99 0.2952 0.0342 0.1616 0.0409 0.1403 0.0464 0.1803 0.0707 
0.97 0.0749 0.0170 0.0882 0.0163 0.1231 0.0229 0.1616 0.0390 
0.94 0.1680 0.0630 0.1725 0.0640 0.1945 0.0705 0.2129 0.0857 
OGar 0.2325 0.3068 0.1725 0.4833 0.3551 0.5218 0.3468 0.5708 
HS 0.2443 0.1008 0.2332 0.0831 0.2580 0.0852 0.2728 0.0950 

Table 3b:Root Mean Squared Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.0157 0.1243 0.0207 0.1425 0.0179 0.1327 0.0190 0.1367 
0.99 0.0627 0.2425 0.0274 0.1634 0.0174 0.1306 0.0146 0.1198 
0.97 0.0190 0.1367 0.0134 0.1152 0.0123 0.1103 0.0123 0.1103 
0.94 0.0106 0.1026 0.0084 0.0913 0.0084 0.0913 0.0084 0.0913 
OGar 0.0112 0.1053 0.0067 0.0817 0.0078 0.0882 0.0078 0.0882 
HS 0.0263 0.1601 0.0207 0.1425 0.0190 0.1367 0.0179 0.1327 

Table 3c:Binary Loss Function 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1059 2.3013 0.1076 1.9655 0.0984 1.7724 0.0964 1.6477 
0.99 0.1627 1.9771 0.1176 1.9988 0.1045 2.0032 0.997 2.0033 
0.97 0.1164 2.4984 0.1082 2.5095 0.1067 2.5101 0.1067 2.5101 
0.94 0.1129 3.0507 0.1092 3.0519 0.1092 3.0519 0.1092 3.0519 
OGar 0.0432 0.8505 0.0293 0.5262 0.0260 0.4536 0.0261 0.4517 
HS 0.0962 1.5635 0.0936 1.6505 0.0948 1.5820 0.0893 1.5211 

Table 3d:Quadratic Loss Function 
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Table 4:  Decomposition of the Test of Conditional Coverage – 95% VaR 

 
 50 days  125 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 0.3375 7.4285* 7.8623*  1.8668 9.9624* 11.917* 
0.99 117.39* 2.1227 119.76*  5.1701* 6.6285* 11.927* 
0.97 4.2871* 4.0434* 8.4566*  2.1912 5.6059* 7.8841* 
0.94 0.3375 1.0217 1.4556  4.7278* 1.6424 6.4502* 
OGar 1.0549 4.5440* 5.6906  11.384* 8.3522* 19.805* 
HS 14.899* 10.112* 25.159*  1.3013 8.3162* 9.7328* 

 
 
 

 250 days  500 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 5.2524* 5.4328* 10.764*  8.3362* 12.729* 21.138* 
0.99 2.5432 10.776* 13.405*  6.3924* 8.5243* 14.993* 
0.97 3.7675 4.6306* 8.4804*  3.7675 4.6306* 8.4804* 
0.94 4.7278* 1.6424 6.4504*  4.7278* 1.6424 6.4502* 
OGar 5.8071* 5.7180* 11.603*  4.2330* 1.5040 5.8181 
HS 0.3755 7.9869* 8.4717*  1.5509 10.045* 11.712* 

* signifies LR test is significant at the 5% level. 
 
 

Table 5:  Decomposition of the Test of Conditional Coverage – 99% VaR 
 

 50 days  125 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 4.9581* 6.9018* 11.892*  15.826* 7.3480* 23.216* 
0.99 228.07* 6.3319* 234.53*  37.179* 6.4033* 43.638* 
0.97 11.646* 4.8368* 16.521*  1.9249 4.1873* 6.1393* 
0.94 0.0720 0.4088 0.5022  0.4892 0.2542 0.7603 
OGar 0.2493 5.5340* 5.8062  2.1956 16.827* 19.036* 
HS 33.156* 14.270* 47.479*  15.826* 15.825* 31.693* 

 
 
 

 250 days  500 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 9.1564* 14.120* 23.313*  11.646* 17.844* 29.529* 
0.99 8.0062* 9.9460* 17.987*  3.2852 12.699* 16.013* 
0.97 0.9028 4.8197* 5.7472  0.9028 4.8200* 5.7472 
0.94 0.4892 0.2542 0.7603  0.4892 0.2542 0.7603 
OGar 0.9102 0.2213 1.1473  0.9102 0.2213 1.1473 
HS 11.646* 12.934* 24.618*  9.1564* 19.326* 28.519* 

* signifies LR test is significant at the 5% level. 
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Tables 6a – 6d:  Evaluation statistics – 95% VaR (Sample: July 1st 1993 – 17th December 1998) 

 
 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1403 0.0847 0.0852 0.1845 0.1404 0.2487 0.2101 0.2987 
0.99 -0.2903 0.0423 -0.0972 0.0916 0.0248 0.1165 0.0710 0.1504 
0.97 -0.0013 0.0612 0.0319 0.0703 -0.0083 0.1034 -0.0315 0.1256 
0.94 0.1046 0.1240 0.0286 0.1540 -0.0292 0.1726 -0.0539 0.1787 
OGar 0.0567 0.1826 -0.0006 0.2305 -0.0591 0.2521 -0.1142 0.2448 
HS -0.0101 0.1983 -0.0479 0.1865 -0.0686 0.1900 -0.0816 0.2021 

Table 6a:Mean Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1639 0.0271 0.2032 0.1460 0.2855 0.1468 0.3651 0.1715 
0.99 0.2934 0.0260 0.1336 0.0250 0.1190 0.0318 0.1663 0.0562 
0.97 0.0612 0.0092 0.0771 0.0090 0.1037 0.0154 0.1294 0.0189 
0.94 0.1622 0.0552 0.1566 0.0489 0.1750 0.0542 0.1866 0.0553 
OGar 0.1912 0.1474 0.2305 0.1759 0.2589 0.2185 0.2701 0.1468 
HS 0.1985 0.0632 0.1925 0.0601 0.2019 0.0553 0.2179 0.0675 

Table 6b:Root Mean Squared Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.0484 0.2147 0.0449 0.2071 0.0379 0.1909 0.0330 0.1786 
0.99 0.1192 0.3242 0.0638 0.2445 0.0428 0.2024 0.0379 0.1909 
0.97 0.0624 0.2420 0.0442 0.2056 0.0421 0.2008 0.0421 0.2008 
0.94 0.0491 0.2161 0.0414 0.1992 0.0414 0.1992 0.0414 0.1992 
OGar 0.0400 0.1960 0.0372 0.1892 0.0407 0.1976 0.0449 0.2071 
HS 0.0729 0.2601 0.0561 0.2302 0.0519 0.2219 0.0540 0.2261 

Table 6c:Binary Loss Function 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1042 0.6086 0.1000 0.5830 0.0902 0.5695 0.0798 0.5301 
0.99 0.1826 0.6145 0.1231 0.5947 0.0978 0.5888 0.0916 0.5851 
0.97 0.1236 0.6415 0.1020 0.6331 0.0997 0.6340 0.0998 0.6341 
0.94 0.1107 0.6946 0.1002 0.6869 0.1002 0.6870 0.1002 0.6870 
OGar 0.0958 0.8254 0.0832 0.5938 0.0834 0.5512 0.0894 0.5548 
HS 0.1274 0.5417 0.1097 0.5441 0.1054 0.5375 0.1073 0.5328 

Table 6d:Quadratic Loss Function 
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Tables 7a – 7d:  Evaluation statistics – 99% VaR  (Sample: July 1st 1993 – 17th December 1998) 

 
 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1354 0.0862 0.0687 0.1781 0.1120 0.2418 0.1782 0.2899 
0.99 -0.2934 0.0442 -0.1105 0.0884 -0.0002 0.1117 0.0438 0.1492 
0.97 -0.0054 0.0652 0.0173 0.0761 -0.0314 0.1088 -0.0557 0.1284 
0.94 0.1001 0.1266 0.0147 0.1589 -0.0512 0.1766 -0.0775 0.1790 
OGar 0.0520 0.1812 -0.0146 0.2311 -0.0806 0.2524 -0.1357 0.2453 
HS 0.0113 0.2186 0.0244 0.2142 0.0513 0.2408 0.0469 0.2484 

Table 7a:Mean Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.1604 0.0268 0.1909 0.1411 0.2664 0.1451 0.3402 0.1538 
0.99 0.2967 0.0273 0.1415 0.0249 0.1117 0.0275 0.1554 0.0475 
0.97 0.0655 0.0096 0.0780 0.0099 0.1132 0.0159 0.1399 0.0196 
0.94 0.1613 0.0549 0.1595 0.0507 0.1838 0.0546 0.1950 0.0552 
OGar 0.1885 0.1468 0.2315 0.1760 0.2648 0.2095 0.2802 0.1430 
HS 0.2188 0.0714 0.2155 0.0712 0.2461 0.0664 0.2527 0.0752 

Table 7b:Root Mean Squared Relative Bias 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.0168 0.1287 0.0217 0.1459 0.0161 0.1260 0.0168 0.1287 
0.99 0.0652 0.2470 0.0288 0.1672 0.0182 0.1338 0.0147 0.1205 
0.97 0.0210 0.1436 0.0140 0.1176 0.0133 0.1147 0.0133 0.1147 
0.94 0.0112 0.1054 0.0084 0.0914 0.0084 0.0914 0.0084 0.0914 
OGar 0.0105 0.1021 0.0070 0.0835 0.0077 0.0875 0.0084 0.0914 
HS 0.0273 0.1632 0.0224 0.1482 0.0196 0.1388 0.0161 0.1260 

Table 7c:Binary Loss Function 
 
 

 50 days 125 days 250 days 500 days 
 Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev. 

VCV 0.0611 0.6284 0.0698 0.6060 0.0596 0.5880 0.0594 0.5495 
0.99 0.1252 0.6187 0.0792 0.6032 0.0656 0.6172 0.0596 0.6109 
0.97 0.0692 0.6654 0.0584 0.6645 0.0575 0.6674 0.0575 0.6674 
0.94 0.0493 0.7162 0.0445 0.7127 0.0445 0.7128 0.0445 0.7128 
OGar 0.0486 0.9473 0.0333 0.5818 0.0282 0.4978 0.0298 0.4995 
HS 0.0679 0.4890 0.0638 0.5190 0.0638 0.5384 0.0540 0.5037 

Table 7d:Quadratic Loss Function 
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Table 8:  Decomposition of the Test of Conditional Coverage – 95% VaR 

 (Sample: July 1st 1993 – 17th December 1998) 
 

 50 days  125 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 0.0789 10.052* 10.130*  0.8136 9.6029* 10.416* 
0.99 105.40* 3.5011 108.90*  5.2892* 7.8582* 13.147* 
0.97 4.3020* 6.6511* 10.953*  1.0568 7.4115* 8.4682* 
0.94 0.0251 1.7663 1.7914  2.3670 2.2922 4.6592 
OGar 3.2321 9.9177* 13.150*  5.4060* 8.7361* 14.142* 
HS 13.915* 14.987* 28.902*  1.0768 10.171* 11.248* 

 
 
 

 250 days  500 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 4.8055* 5.6367* 10.442*  9.8589* 11.600* 21.460* 
0.99 1.6434 10.989* 12.632*  4.8055* 8.3131* 13.119* 
0.97 1.9878 6.0581* 8.0459*  1.9878 6.0581* 8.0459* 
0.94 2.3670 2.2922 4.6592  2.3670 2.2922 4.6592 
OGar 2.7816 6.7583* 9.5400*  0.8135 1.4411 2.2547 
HS 0.1064 5.8103* 5.9166  0.4680 9.0839* 9.5519* 

* signifies LR test is significant at the 5% level. 
 
 

Table 9:  Decomposition of the Test of Conditional Coverage – 99% VaR 
 (Sample: July 1st 1993 – 17th December 1998) 
 

 50 days  125 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 5.5759* 7.4370* 13.013*  14.864* 8.3614* 23.225* 
0.99 195.77* 9.0971* 204.87*  33.631* 7.5757* 41.207* 
0.97 13.321* 5.0123* 18.333*  2.0743 4.7294* 6.8037* 
0.94 0.2063 0.3631 0.5694  0.3824 0.2037 0.5861 
OGar 0.0381 6.9542* 6.9923*  1.4354 16.787* 18.223* 
HS 29.432* 16.460* 45.893*  16.474* 16.825* 33.299* 

 
 
 

 250 days  500 days 
 LRuc LRind LRcc  LRuc LRind LRcc 

VCV 4.5639* 13.007* 17.571*  5.5759* 17.902* 23.478* 
0.99 7.8511* 11.041* 18.892*  2.8089 14.510* 17.319* 
0.97 1.4412 5.1123* 6.5534*  1.4412 5.1123* 6.5534* 
0.94 0.3824 0.2037 0.5861  0.3824 0.2037 0.5861 
OGar 0.8171 0.1710 0.9882  0.3824 0.2037 0.5861 
HS 10.440* 14.719* 25.159*  4.5639* 18.806* 23.370* 

* signifies LR test is significant at the 5% level. 
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