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Abstract

Are monetary policy regimes state-dependent? To answer the question this paper estimates New Key-
nesian general equilibrium models that allow the state of the economy to influence the monetary authority’s
stance on inflation. I take advantage of recent developments in solving rational expectations models with
state-dependent parameter drift to estimate three models on U.S. data between 1965-2009. In these
models, the probability of remaining in a monetary policy regime that is relatively accommodative towards
inflation, varies over time and depends on endogenous model variables; in particular, either deviations of
inflation or output from their respective targets or a monetary policy shock. The main contribution of
this paper is that it finds evidence of state-dependent monetary policy regimes. The model that allows
inflation to influence the monetary policy regime in place, fits the data better than an alternative model
with regime changes that are not state-dependent. This finding points towards reconsidering how changes
in monetary policy are modeled.
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Non-technical Summary
Research Question

This paper examines whether monetary policy regimes are state-dependent. How to model changes in monetary
policy is an important and relevant question as within the last thirty years most advanced economies have
experienced at least two major changes in the way their central bank conducts monetary policy. The first and
the one this paper examines, is the adoption of inflation-targeting, which explicitly began in the early 1990s
where beforehand, other nominal variables such as exchange rates or the monetary base were targeted. The
second is the more recent move towards unconventional monetary policy instruments after the nominal interest
rate hit its effective lower-bound, prompted in most economies by the global financial crisis of 2008.

Contribution

Despite the mentioned shifts in monetary policy, estimated structural models that are used for policy analysis
often assume the central bank targets and the policy response to deviations from these targets remains
constant across the entire estimation sample. The primary example is New Keynesian general equilibrium
models, that are widely used by central banks and typically estimated on at least two decades of quarterly
data. In this framework, the monetary policy instrument is usually the nominal interest rate, and it is set
following a systematic rule that depends on how far target variables such as price inflation and output are
away from target levels. Recent advances in the literature propose empirical approaches to modeling changes
in monetary policy within this class of models that allow for time-variation in parameters of the systematic
rule. To keep additional complexities to a minimum, the time-varying parameters are assumed to follow an
exogenous process. This paper relaxes the assumption of a completely exogenous source of time-variation by
estimating New Keynesian general equilibrium models that allow for changes in the monetary authority’s stance
on inflation to depend on the performance of the economy and finds supportive evidence of this mechanism.
Model dynamics are affected through the formation of agents expectations as the probability of future regime
change can now depend on variables that gauge the performance of the economy relative to target levels such
as inflation and output gaps.

To estimate the effects of allowing for state-dependent monetary policy regimes, I focus on the well-studied
case of the adoption of inflation targeting by the U.S. Federal Reserve, spearheaded by the appointment of
chairman Paul Volcker in 1979. During the regime prior to Volcker, the central bank is believed to have been
more accommodative of inflation and instead pursued other nominal targets such as the monetary base and
exchange rates, in addition to placing more emphasis on influencing unemployment. The increased focus of
monetary policy on inflation is put forward as one of the leading causes of the remarkable stabilisation of
the U.S. economy from the mid-1980s until the recent global financial crisis in 2008, often referred to as the
great moderation period. However, as the existing literature does not allow for the type of state-dependence
considered in this paper, this particular regime change is an ideal candidate for evaluating the mechanism.

Results

The best fitting model identifies the period between 1973 and 1985 as being relatively accommodative towards
inflation. In this model, the probability of remaining in this regime has an inverse relationship to the amount of
inflation in the previous period is above the target level. This form of state-dependence reduces the expected
duration of the accommodative regime from eight quarters in 1973 to four quarters in 1978, when inflation
reached peak rates. The time-varying probabilities show some evidence of dampening responses to cost-push
shocks relative to a model estimated with no state-dependence. Parameter estimates are also affected, most
importantly, the estimated inflation target in the accommodative regime is lower when state-dependence is
enabled. I find mixed evidence that state-dependence alters agents’ expectations through impulse response
analysis suggesting a dampening of inflation responses only to cost-push shocks relative when the mechanism
is shutdown.
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1 Introduction
How to model changes in monetary policy is an important and relevant question; as in the last thirty years
most advanced economies have experienced at least two major changes in the way their central bank conducts
monetary policy. The first and the one this paper examines, is the adoption of inflation-targeting, which
explicitly began in the early 1990s where beforehand, other nominal variables such as exchange rates or the
monetary base were targeted. The second is the more recent move towards unconventional monetary policy
instruments after the nominal interest rate hit its effective lower-bound, prompted in most economies by the
global financial crisis of 2008. Despite these shifts in monetary policy, estimated structural models that are
used for policy analysis often assume the behaviour of the central bank remains constant across the entire
estimation sample. The primary example is New Keynesian general equilibrium models, that are widely used
by central banks and typically estimated on at least two decades of quarterly data. In this framework, the
monetary policy instrument is usually the nominal interest rate, and it is set following a systematic rule that
depends on how far target variables such as price inflation and output are away from target levels.

Recent advances in the literature propose empirical approaches to modeling changes in monetary policy
within this class of models that allow for time-variation in parameters of the systematic rule. The time-varying
parameters are typically those that determine either the elasticity of the nominal interest rate with respect to
deviations of inflation away from target level or the inflation target. However, parameter changes which are
endogenous to the state of the economy, by affecting agents expectations, introduce additional non-linearities
which complicate the solution of the model. Therefore to keep additional complexities to a minimum, the time-
varying parameters are assumed to follow an exogenous process. This assumption implies that endogenous
model variables are not allowed to influence changes in monetary policy regime directly. Therefore, often when
agents form expectations of future variables needed to construct their optimal decision rules, the probability
they assign to future policy changes is not directly affected by the recent state of the economy.

The assumption of a completely exogenous source of time-variation although simplifying, seems unrealistic
as ultimately the state of the economy determines how central banks choose their targets and the strength with
which these targets are pursued. Also, central banks, as public institutions are judged on their performance,
i.e. how well they deliver on their objectives; therefore, it seems natural to assume that central banks will be
under pressure to change their policy approach if targets are considerably or persistently missed.

This paper relaxes the assumption of a completely exogenous source of time-variation by estimating New
Keynesian general equilibrium models that allow for changes in the monetary authority’s stance on inflation to
depend on the performance of the economy and finds supportive evidence of this mechanism. The mechanism
takes the form of a logit function that explicitly links the probability of remaining in a monetary policy regime
to endogenous model variables. Model dynamics are affected through the formation of agents expectations
as the probability of future regime change can now depend on variables that gauge the performance of the
economy relative to target levels such as inflation and output gaps. This paper estimates three models with
state-dependence on U.S. data, in which, the inflation gap, output gap or a monetary policy shock that
captures unsystematic changes in monetary policy, can influence the probability of remaining in a monetary
policy regime that is relatively accommodative towards inflation.

To estimate the effects of allowing for state-dependent monetary policy regimes, I focus on the well-studied
case of the adoption of inflation targeting by the U.S. Federal Reserve, spearheaded by the appointment of
chairman Paul Volcker in 1979. During the regime prior to Volcker, the central bank is believed to have been
more accommodative of inflation and instead pursued other nominal targets such as the monetary base and
exchange rates, in addition to placing more emphasis on influencing unemployment. The increased focus of
monetary policy on inflation is put forward as one of the leading causes of the remarkable stabilisation of
the U.S. economy from the mid-1980s until the recent global financial crisis in 2008, often referred to as the
great moderation period. However, as the existing literature does not allow for the type of state-dependence
considered in this paper, this particular regime change is an ideal candidate for evaluating the mechanism.

The best fitting model identifies the period between 1973 and 1985 as being relatively accommodative
towards inflation. In this model, the probability of remaining in this regime has an inverse relationship to the
amount by which inflation in the previous period is above the target level. This form of state-dependence
reduces the expected duration of the accommodative regime from eight quarters in 1973 to four quarters in
1978, when inflation reached peak rates. The time-varying probabilities show some evidence of dampening
responses to cost-push shocks relative to a model estimated with no state-dependence. Parameter estimates
are also affected, most importantly, the estimated inflation target in the accommodative regime is lower when
state-dependence is enabled. I find mixed evidence that state-dependence alters agents expectations through
impulse response analysis suggesting a dampening of inflation responses only to cost-push shocks relative when
the mechanism is shutdown.
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This rest of this paper is organised as follows. Section 2 presents a brief review of how this paper fits
in with the existing literature. Section 3 illustrates the underlying New Keynesian model and introduces the
concept of state-dependent monetary policy regimes. Section 4 discusses the estimation strategy and presents
simulation results. In Section 5, I consider which of the estimated models provides the best fit with the data.
Section 6 presents impulse responses from the selected model, as this model is state-dependent results are
compared to estimated models with no state-dependence. Finally, Section 7 concludes.

2 Existing literature
This paper extends the work of Barthélemy and Marx (2017) to estimate general equilibrium models with
state-dependent monetary policy regimes.

Barthélemy and Marx (2017) develop an algorithm to solve general equilibrium models with regime-
switching parameters in which the transition probabilities are time-varying and smooth functions of endogenous
model variables. They then apply their method to solve a calibrated model with two monetary policy regimes.
The regime that is relatively accommodative towards inflation, with a higher inflation target and a relatively
weaker response to deviations away from this target, is state-dependent. Specifically, the probability of leaving
this regime is a logit function of the distance past inflation is away from the inflation target of this regime.
As the degree of state-dependence is unknown, Barthélemy and Marx (2017) experiment with a broad range
of values to show that the mechanism alters model-implied dynamics for macroeconomic variables and their
responses to shocks.

I extend the calibration excercise of Barthélemy and Marx (2017), to directly estimate the degree of state-
dependence implied by their model on U.S. data using Bayesian techniques. Thus providing an estimate of the
degree of state-dependence of the relatively inflation accommodating regime believed to be in place during the
1970s by the seminal studies of Clarida, Gali and Gertler (2000) and Lubik and Schorfheide (2004). Additionally,
I also consider two alternative forms of state-dependence, in which, the output gap and a monetary policy
shock that captures unsystematic changes in monetary policy, can influence the probability of remaining in a
monetary policy regime that is relatively accommodative towards inflation.

From the models considered, the model preferred by the data is the one considered in Barthélemy and Marx
(2017) and allows for state-dependence through that deviations of inflations from the relatively higher target
level of the accommodative regime. This form of state-dependence in general equilibrium models was first
considered in Davig and Leeper (2008), who solve a model with two similar monetary policy regimes that differ
with respect to their stance on inflation. However, in the case of Davig and Leeper (2008), only the monetary
policy instrument’s inflation elasticity can discretely change, with the switch being triggered by the previous
periods inflation gap from a target level crossing a certain threshold. Their threshold-switching approach
relies on global approximation methods that can have large computational costs, which are undesirable when
following a Bayesian approach to estimation.12

Solutions algorithms that allow for feasible estimation of general equilibrium models with state-dependence,
such as those proposed by Barthélemy and Marx (2017), Maih (2015) and Forester et al. (2018) have only
recently become available. Therefore, to my knowledge only a handful of studies have conducted empirical
analysis with this class of models.

The closest current research to this paper is Chang, Tan and Wei (2018), who also adopt the solution
method of Barthélemy and Marx (2017) to estimate a regime-switching model with state-dependent monetary
policy regimes. Chang, Tan and Wei (2018) consider a similar underlying model and also study the Federal
Reserve’s adoption of a more aggressive stance towards inflation during 1980s. The main difference between
the work of Chang, Tan and Wei (2018) with this paper is the form of state-dependence considered. Chang,
Tan and Wei (2018) assume the level of a latent factor determines the regime in place, and state-dependence is
allowed for by correlation between the latent factor and the monetary policy shock. As the latent factor follows
an autoregressive process, their mechanism allows for an endogenous feedback channel in which, the recent
history of policy shocks lead to a cumulative effect on the regime factor that eventually trigger a regime shift.
The economic intuition behind this mechanism is that assuming a monetary policy regime that accommodates
inflation is in place a series of contractionary shocks agents would lead to agents expecting an aggressive

1Applying Bayesian techniques to model estimation is now the conventional approach to estimating New Keynesian general
equilibrium models; benefits are described in detail in An and Schorfheide (2003) and Herbst and Schorfheide (2015).

2Markov Chain Monte Carlo methods are used to approximate the posterior distribution of parameters and object of interest
which require solving the general equilibrium model over a hundred thousand times, therefore a solution method with a low
computational method is highly desirable.
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monetary policy regime would come in its place. Whereas, I follow Barthélemy and Marx (2017) by enabling a
logit function to link the probability of switching regimes to endogenous model variables, which in the case of
output and inflation are observed in the data. Chang, Maih and Tan (2018) conduct a similar exercise using
the latent factor to induce state-dependence but apply a solution algorithm along the lines of Maih (2015). An
additional difference in this paper is that I allow the elasticity of the monetary policy instrument with respect
to inflation and the inflation target to change across monetary policy regime. I present evidence of significant
change in both the inflation target and sensitivity of the monetary policy instrument to changes in inflation
across regimes.

Benigno et al. (2018) also estimate a state-dependent general equilibrium model by allowing the probability
of a crisis regime in Mexico to depend on the country’s leverage to output ratio. They assume state-dependence
by directly linking endogenous model variables to time-varying transition probabilities; they do so via a logistic
function. Maih, Linde and Wouters (2018) estimate a larger scale general equilibrium model with monetary
regimes on U.S. data, to consider how to model periods where nominal interests rates reached the effective
lower bound. The model estimated with regimes that are not state-dependent compares favourably with the
other approaches the authors consider. However, they suggest introducing state-dependence through time-
varying transition probabilities that are a logistic function of the shadow rate, would allow for changes in the
propagation mechanism during the period of the effective lower bound regime.

Although the estimation of New Keynesian general equilibrium models with state-dependent regimes is
new, empirical work on regime-switching models is a developed strand of literature since the seminal work
of Hamilton (1989). Markov-switching reduced-form models with state-dependence in the form of time-
varying transition probabilities were first considered in economic applications by Filardo (1994) and Filardo
and Gordon (1998). Kim et al. (2003) extend this method of introducing state-dependence to Markov-
switching multivariate models. The theoretical work of Leeper and Zha (2003), emphasises that even small
but persistent changes in monetary policy alter the way agents form expectations and therefore affects their
decision rules. Further theoretical work by Davig and Leeper (2007) shows that allowing for monetary regimes
through discrete switches in the monetary policy instrument’s inflation elasticity response to inflation within a
general equilibrium framework increases the parameter space that yields determinate solutions.

Davig and Doh (2014) and Bianchi (2013) estimate New Keynesian general equilibrium models with
switching monetary policy rules and both concentrate on the adoption of an aggressive stance to inflation in
the U.S. around the 1980s, as in this paper. Davig and Doh (2014) estimate a small-scale model along the
lines of this paper and find a significant reduction in inflation persistence after the 1980s is primarily explained
by the change in monetary policy towards aggressively pursuing inflation. Whereas, Bianchi (2013) estimates a
richer model and constructs counterfactuals that suggest the possibility of moving to a monetary policy regime
with an even more aggressive inflation stance than estimated would considerably mitigate the recessions in the
1970s through expectations effects.

Both Davig and Doh (2014) and Bianchi (2013) find that the best-fitting models allow regime-switching
in monetary policy in addition to independent switching in the variance of structural shocks. However, despite
their findings, this paper does not allow for heteroskedasticity due to the additional computational time added
to solve the model and leaves this for future work that is ongoing.

The literature has yet to distinguish whether the monetary policy instrument’s inflation elasticity response
or inflation target or both have changed in the U.S. during the 1980s. Therefore I follow Barthélemy and Marx
(2017) in allowing for two monetary policy regimes, where the relative inflation accommodating regime has a
high inflation target and a relatively low Taylor rule response to deviations away from this target. Liu et al.
(2011) model monetary policy regimes in the U.S. as changes in the inflation target rather than changes in the
Taylor rule response to inflation. Although within this model the difference between the inflation targets of
the two regimes is substantial, they find that the data prefer alternative models allowing solely for stochastic
volatility. Forester (2017) conducts a simulation exercise to examine the implications of modelling monetary
policy regimes as changes in the inflation target or changes in the Taylor rule response to inflation. The main
findings indicate a switching target alters the level of model-implied variables, whilst a switching inflation
response alters the parameter space.

Outside from the U.S., regime-switching general equilibrium models have been applied to examine the
economic effects of adopting inflation targeting monetary policy regimes in small open economies as in Mumtaz
and Liu (2011) and Alstaheim, Bjørnland and Maih (2013).
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3 Modeling monetary policy regimes within a general equilibrium
framework

To explicitly allow for changing monetary policy, some form of parameter drift must be introduced into the
reaction function the central bank uses to set its policy instrument. This paper estimates a class of models
where the type of parameter drift is discrete and the state of the economy can influence the monetary policy
regime in place.

In this section, I briefly describe the underlying economic model and then introduce the concept of
state-dependent monetary policy regimes.

3.1 Benchmark Markov-Switching model
For the empirical analysis presented in this paper, I consider a standard small-scale New Keynesian DSGE
model. The model is identical to the setup of Barthélemy and Marx (2017), Davig and Doh (2014) and
Chang, Tan and Wei (2018) who also estimate similar models where the parameters of the monetary policy
rule are subject to regime shifts.

Households

The representative household chooses {Ct, Lt, Bt}∞t=0 to maximise liftime utility,

Et

∞∑
t=0

ξtβ
t

(
C1−τ
t

1− τ
− Lt

)
,

where Ct denotes consumption of a composite good, Lt is hours worked, β ∈ (0, 1) is the discount factor
and τ measures the inverse of the intertemporal elasticity of substitution. Utility maximisation is subject to
the intertemporal budget constraint

PtCt +QtBt = Bt−1 +WtLt + PtDt − PtTt,

where Bt are nominal bond holdings, the variable Pt denotes the price level, Qt is the price of a zero-
coupon bond at time t yielding 1 in period t + 1, Wt is the nominal wage per hour, Dt are the real profits
from ownership of firms, and Tt are lump-sum taxes. The preference shock ξt represents a shock affecting the
discount factor.

Firms

A continuum of intermediate goods-producing firms, denoted by the subscript j ∈ [0, 1], firm j produces output
according to

Yjt = Ljt,

where Ljt is the labour input hired by firm j and is the only input. The labour market is perfectly
competitive.

Nominal rigidities are introduced à la Rotemberg (1982). The monopolistic intermediate goods-producing
firms pay a cost of adjusting their price, given by

AC =
φ

2

(
Pjt

Π∗stPjt−1
− 1

)2

Yt,

where φ ≥ 0 determines the magnitude of the price adjustment cost, Π∗st denotes the regime-dependent
steady-state that coincides with the central bank’s inflation target in regime st and Pjt denotes the nominal
price set by firm j at time t. The price adjustment cost is in terms of the final good Yt. Each intermediate
goods-producing firm maximises the expected present value of profits,

∞∑
s=0

βsλt+s
Djt+s

Pt+s
,
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where λt+s is the representative household’s stochastic discount factor and Djt are nominal profits of firm
j at time t. Real profits are

Djt

Pt
=
PjtYjt
Pt

− Wt

Pt
Yjt −

φ

2

(
Pjt

Π∗stPjt−1
− 1

)2

Yjt.

The profit-maximisation problem for the final-goods producing firm implies that the demand for each
intermediate good is give by

yjt =

(
Pjt
Pjt−1

)−θt
Yt,

where θt > 0 is the time-varying elasticity of substitution between goods.
The steady-state elasticity of substitution is θ, and the steady-state markup is given up u = θ

θ−1 .

Monetary Policy

The monetary authority set the short-term nominal rate using the following rule

Rt
R∗(st)

=

[
Rt−1

R∗(st−1)

]ρr [( Πt

Π∗(st)

)α(st)(Yt
Ȳ

)γ
εrt

]1−ρr

(1)

st ∈ {1, 2} ,Π∗ ∈ {Π∗L,Π∗H} , α ∈ {αL, αH}

Π∗L < Π∗H , αL < αH (2)

Accomodative
InflationTargeting

st = 1
st = 2

{
Π∗H , αL
Π∗L, αH

}
where Rt is the gross nominal interest rate, Πt = Pt

Pt−1
, Πt = 1 + πt and R∗,Π∗ and Ȳ represent target

values of the nominal interest rate, inflation and output the monetary authority pursues.
The above rule suggests the central bank adjusts the nominal interest rate in response to deviations of

inflation and output from their respective targets. The shock εrt captures unanticipated deviations from
the policy rule and its standard deviation is denoted by σr. The parameter ρ is the degree of interest rate
smoothing, and α and γ are the reaction coefficients to inflation and output gaps respectively. The monetary
policy shock εt captures unanticipated deviations from the policy rule. This rule suggests that the targets
a central bank sets and the strength it pursues deviations away from these targets are constant and do not
change.

The assumption of rational expectations implies that within a constant parameter model, agents know
that monetary policy will not change regardless of how well the central bank delivers on its targets. And
this implies to have a unique and stable solution of the constant parameter model the central bank must
increase the nominal rate more than proportionally in response to movements of inflation, meaning α > 1.
The constant policy rule can be used to examine regime changes if estimated across subsamples. However,
this approach ignores the effect of regime changes on agents expectations and therefore is not consistent with
the rational expectations hypothesis.

Therefore, explicitly modelling policy regimes requires introducing time-variation in the behaviour of the
monetary authority. I allow for two monetary policy regimes in equation 1 where α(st) dictates the regime-
dependent response of nominal interest rates to the deviations of inflation from a regime-dependent target
Π∗(st). Therefore, I assume that both the inflation target and the responsiveness of monetary policy to
deviations from the target switch simultaneously as in Barthélemy and Marx (2017). These two parameters
follow the same two-state first-order Markov process governed by the latent variable st. Equations 1 and 2
suggest when st = 1, the central bank adopts a relatively accommodative stance towards inflation by setting
a high inflation target Π∗H and responding relatively weaker to deviations away from this target captured by
parameter αL. It is worth highlighting that αL can now be lower than 1 as shown in Davig and Leeper (2007).
Alternatively, when st = 2, the central bank adopts a regime that targets inflation relatively aggressively by
setting a low inflation target Π∗L and responds with increased sensitivity to deviations away from this target
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captured by αH . In this case, regimes are not state-dependent, therefore, the probability of moving across
regimes depends solely on the regime that is currently in place. Implying constant transition probabilities,
which are represented by

pij = Pr(st = j|st−1 = i), i, j = 1, 2; p =

[
p11 p12

p21 p22

]
.

Agents in the model know the transitions probabilities and use this information when forming expectations.
A drawback is that the probability of moving across regimes is independent of the state of the economy and
how close the of macro variables are to central bank targets.

Shocks

The steady-state markup is given up u = θ
θ−1 , while the time t markup shock follows an autoregressive process

with drift

lnut = (1− ρu) lnu+ ρu lnut−1 + σuεut.

The preference shock follows a autoregressive process

ln ξt = ρξ ln ξt−1 + σξεξt.

The monetary policy shock εrt in equation 1 captures unanticipated deviations from the policy rule and
follows an iid process as in Barthélemy and Marx (2017) and Bianchi (2012).

First-order conditions

The first-order conditions and equilibrium conditions lead to the following non-linear system

θutC
τ
t −φ(θut−θ+1)

Π

Π∗(st)

[
Π

Π∗(st)
− 1

]
+βφ(θut−θ+1)Et

[
Yt+1

Yt

C−τt+1

C−τt

(
Πt+1

Π∗(st+1)
− 1

)]
=

θ

θ − 1
(3)

Yt = Ct +
φ

2

[
Πt

Π(st)
− 1

]2

Yt (4)

Rt
R∗(st)

=

[
Rt−1

R∗(st−1)

]ρr [( Πt

Π∗(st)

)α(st)(Y t
Ȳ

)γ
εrt

]1−ρr

(5)

Et
[
βRt
Πt+1

(
Ct
Ct+1

)τ (
ξt+1

ξt

)]
= 1 (6)

The benchmark model has one constant monetary policy regime in place and is the non-linear system of
equations 3 - 6 which can be solved by applying perturbation methods as in Judd (1999). An equivalent
method is to log-linearise the system of equations around steady-state values and then solve the linearised
system using the algorithm proposed by Sims (2002).

3.2 Monetary policy regimes with state-dependence
The probability of switching away from the regime with a relatively accommodative stance towards inflation
is now assumed to also depend on selected endogenous variables xt−1.

p1jt = Pr(st = j|st−1 = 1, xt−1); j = 1, 2; xt−1 =
{

Π̂t−1 or Ŷt−1 or εrt

}
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p11t =
eV11(xt−1)

1 + eV11(xt−1)
with V11(xt−1) = p̃11 + λ11(xt−1)

The transition probability p11 is now assumed to be a logit function that depends either on the distance
that output or inflation are away from their respective targets or the level of an exogenous monetary policy
shock. Therefore, I consider three types of state-dependence where p̃11 will determine the steady-state level
of the probability of remaining in the accommodative regime (regime 1) and λ11 measures the degree of state-
dependence. If λ11 = 0, monetary policy regimes are independent of the economy and transition probabilities
are constant. Similar to Barthélemy and Marx (2017) I assume that the aggressive inflation targeting regime
is not state-dependent. This assumption reduces the number of parameters estimated and is consistent with
the view that after the adoption of inflation targeting the approach remained in place until the end of the
sample considered.

Past inflation

State Dependence 1 : p11t =
eV11(Π̂t−1)

1 + eV11(Π̂t−1)
with V11(Πt−1) = p̃11 + λ11(Πt−1 −Π∗H)

The first case of state-dependence allows the transition probability p11t that is, the probability of remaining
in the accommodative regime to depend on the level of past inflation. It would seem plausible to assume that
λ11 is negative, this implies a high rate of inflation above target level leads to a greater probability of switching
to the regime that aggressively targets inflation. As the economy is in the high inflation regime the inflation
target is assumed to take the larger target value Π∗H , the one of this regime. A potential economic rationale
for this form of state-dependence is the political pressures a central bank will face to adopt a new regime if
they deliver a higher levels of inflation than the target level.

Output Gap

State Dependence 2 : p11t =
eV11(Ŷt−1)

1 + eV11(Ŷt−1)
with V11(Ŷt−1) = p̃11 + λ11(Yt−1 − Ȳ )

The next case allows the monetary policy stance on inflation to be driven by the size of the output gap.
The rationale for this form of state-dependence, comes through the output gap being a central variable in
determining the state of the economy. Empirical literature on state-dependence in structural VARs usually
links the output gap or an alternative measure of economic slack with determining whether the economy is in
a recession or in a period of expansion state. Following this line of thought, I would expect λ11 to be negative;
implying that agents would expect the central bank to be more accommodative to inflation during periods
where the output gap is negative.

Monetary policy shock

State Dependence 3 : p11t =
eV11(εrt)

1 + eV11(εtr)
with V11(εrt) = p̃11 + λ11(εrt)

The last form of state-dependence allows the monetary policy shock to influence the probability of remaining
in the accommodative regime. This rule is included to proxy the form of state-dependence introduced by Chang,
Tan and Wei (2018). Within their research, an exogenous latent factor determines the monetary policy regime
in place and state-dependence is introduced by allowing for correlation with monetary policy shocks. As the
latent factor follows an autoregressive process, their mechanism allows for an endogenous feedback channel
in which, the recent history of policy shocks leads to a cumulative effect on the regime factor that eventually
triggers a regime shift. The economic intuition behind this mechanism is that, assuming a monetary policy
regime that accommodates inflation is in place, a series of contractionary shocks would lead to agents expecting
that an aggressive monetary policy regime would come in its place.
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4 Solving and estimating a general equilibrium model with state-
dependent regimes

Allowing the state of the economy to influence parameter changes within a general equilibrium framework
introduces additional challenges in both the solution and estimation of non-linear DSGE models.

To solve the model, I apply the solution algorithm introduced by Barthélemy and Marx (2017) and employ
Bayesian methods for estimation.

4.1 Solution method
To the extent of my knowledge, the only methods that are capable of solving general equilibrium models with
state-dependent parameter changes are those proposed by Davig and Leeper (2008), Maih (2015), Barthélemy
and Marx (2017) and Forester el al. (2018). These papers focus on approximate local solutions and follow
a perturbation approach. I choose the algorithm of Barthélemy and Marx (2017) as it provides determinacy
conditions that ensure a unique and stable equilibrium. I offer a brief description of the algorithm below but
refer the reader to Barthélemy and Marx (2017) for a detailed exposition.

The problem of solving the non-linear general equilibrium model with state-dependent regimes described
in the previous section can take the following representation

Et[fst(zt+1, zt, zt−1, σvt)] = 0 (7)

Pr(st = j|st = i) = pij(xt−1, σvt) (8)

where zt = Ct, Yt, Rt,Πt, ξt, ut︸ ︷︷ ︸ , vt = εrt, εξt, εut︸ ︷︷ ︸ and xt−1 = Π̂t−1 or Ŷt−1 or εrt︸ ︷︷ ︸
where zt is a vector of state variables, vt, is a vector of exogenous shocks, and σ is a perturbation parameter.

st represents the current regime. For any regime i, fi() is a smooth function and Et is the expectation operator
given information available at the time period t. Equation 8 reaffirms that regimes are state-dependent, that is,
st follows a Markov process with time-varying transition probabilities that are a function of lagged endogenous
variables or contemporaneous exogenous shocks. The only restriction on the transition probabilities is that
state-dependence cannot be introduced by contemporaneous endogenous variables.3

The central proposition of the solution algorithm of Barthélemy and Marx (2017) is that the determinacy of
the solution of the regime-switching model with state-dependence above can be deduced from a simpler version
of the model that is quasi-linear with no state dependence. Therefore the first step of the algorithm requires
checking if the linearised model assuming no state-dependence admits a stationary equilibrium. Dynare is used
to take first derivates of the model represents in equation 7 around a regime-specific steady-state assuming
transition probabilities are constant. The linearised model considering no state-dependence is

Et [A(st, st+1)ẑt+1] + B(st)ẑt + C(st)ẑt−1 + σD(st)vt (9)

where matrices A(st, st+1), B(st), C(st), D(st) are regime-dependent matrices constructed using the first
derivates of equation 7 around a regime specific steady-state assuming transition probabilities are constant.

The existence of a unique and stationary equilibrium in the simpler model of equation 9 is then assessed
against the determinacy conditions proposed in Barthélemy and Marx (2012) that focus on models that are
stable when solved forward and are similar to the forward conditions of Cho (2015).

The final step of the solution derives the Taylor expansion of the true solution for small perturbations
around regime-dependent steady-states. The first-order approximation of the model solution is

ẑt = Ω(st)ẑt−1 + ∆(st)vt (10)

where Ω(st),∆(st) are solution matrices that are a non-linear function of the model parameters and
transition probabilities. To enable feasible estimation of the model in equation 7, I only consider the first-order
approximation and avoid additional computational burdens associated with higher-order approximations.4

3This is not the case for the solution method of Maih (2015), where contemporaneous model variables can introduce state-
dependence, however, these variables must have a unique steady-state.

4Forester et al. (2018) estimate state-dependent regime-switching general equilibrium models with second-order approxima-
tions. However, their solution method does not allow for regime-dependent steady-states which are used in the application of this
paper.
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Nevertheless, the complications introduced by allowing for state-dependent regimes impose a relatively
higher computational burden when compared to a constant parameter model. Resulting in a considerably
longer solution time, where the most time is spent on checking for the determinacy of the solution.

4.2 Estimation
I adopt a full information Bayesian approach to model estimation. This involves combining the approximate
likelihood function with prior distributions and then employing a Markov chain Monte Carlo (MCMC) algo-
rithm to approximate the posterior distribution of the model parameters. Adjustments must be made to the
procedure used to approximate the likelihood function to allow for time-varying transition probabilities. This
computational burden is the primary reason why estimating state-dependent models with independent changes
in the volatility of structural shocks is left as future work.

Likelihood

The model solution in equation 10 is combined with a measurement equation to form the following state-space
representation

yt = z∗(st) +Hẑt

ẑt = Ω(st)ẑt−1 + ∆(st)vt, vt ∼ N(0,Σv)

where yt represents the data used for estimation and z∗(st) represents the steady state of model variables
that depend on the data; specifically, inflation, output and the nominal interest rate.

The presence of different regimes causes the predictions of the Kalman filter to be conditional on the
entire history of the regimes in place throughout the sample leaving the standard Kalman filter intractable.
Delle Monache and Petrella (2019) propose a way of estimating state-space without the Kalman filter however
they concentrate on models with a linear state-pace and estimated used classical inference. Therefore, an
approximation of the likelihood function is formed following the algorithm proposed by Kim (1994). The key
feature of this approximation is that a limited number of predictions of model variables are carried forward
from the Kalman filter iterations each period, and these are then collapsed at the end of each iteration.
Following Kim and Nelson (1999) and Mumtaz and Liu (2011), I track forecasts that depend on the regime
in place in period t, t− 1 and t− 2 and accounts for eight possible paths of the of model variables. However,
their approach must be amended when considering state-dependent regimes. I do this by replacing constant
transition probabilities with their now time-varying counterparts. The equations governing state-dependence
are used to obtain the transition probabilities that are then passed directly to the filtering algorithm in the cases
where state-dependence is linked to lagged observations of the data such as output and inflation. However,
the contemporaneous monetary policy shock is unobserved and as the filter proposes multiple predictions of
this state variable an average is used. Chang, Tan and Wei (2018b), take an alternative alternative approach
by augmenting their state-space with the latent factor determining the regime in place.

The algorithm begins with a Kalman filtering step to predict the state variables ẑt

ẑ
(h,i,j)
t|t−1 = Ωj ẑ

(i,j)
t|t−1

P
(h,i,j)
t|t−1 = Ωj ẑ

(i,j)
t|t−1Ωj

′
+ ∆jΣv∆

j′

η
(h,i,j)
t|t−1 = yt − z∗

j

−Hẑ(h,i,j)
t|t−1

f
(h,i,j)
t|t−1 = HP

(h,i,j)
t|t−1 H ′

ẑ
(h,i,j)
t|t = ẑ

(h,i,j)
t|t−1 + P

(h,i,j)
t|t−1 H ′(f (h,i,j)

t|t−1 )−1η
(h,i,j)
t|t−1
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P
(h,i,j)
t|t = (I − P (h,i,j)

t|t−1 H ′(f (h,i,j)
t|t−1 )−1)HP

(h,i,j)
t|t−1

where ẑ(h,i,j)
t|t−1 represent the predictions the model state variables that are conditioned on past information

t−1 and the regime in place at time t, t−1 and t−2. Similarly P (h,i,j)
t|t−1 is the covariance of these predictions,

η
(h,i,j)
t|t−1 denotes the forecast error and f (h,i,j)

t|t−1 represents covariance of the forecast error. ẑ(i,j)
t|t−1 represents the

collapsed states and represents the predictions of the model that are conditioned on past information t − 1,
the regime in place at time t and the regime of the previous period t− 1. The collapsing stage reduces the 8
predictions of the states to 4 and is conducted using weights based on the joint and marginal probabilities of
the regimes in place.

ẑ
(i,j)
t|t =

Pr(st−2 = h, st−1 = i, st = j)

Pr(st−1 = i, st = j)
ẑ

(h,i,j)
t|t

To obtain the probability terms, the Hamilton filter is applied, this step has been modified to allow for
time-varying transition probabilities.

Pr(st−2 = h, st−1 = i, st = j|ϕt−1) = Pr(st = j|st = i, ẑt−1)×
2∑
g=1

Pr(st−3 = g, st−2 = h, st−1 = i|ϕt−1)

where |ϕt−1 represents conditioning on information in time period t− 1, this term updated with ϕt 5

Pr(st−2 = h, st−1 = i, st = j|ϕt) =

f(yt|st−2 = h, st−1 = i, st = j, ϕt−1)× Pr(st−2 = h, st−1 = i, st = j|ϕt−1)∑2
h=1

∑2
i=1

∑2
j=1 f(yt|st−2 = h, st−1 = i, st = j, ϕt−1)

where the conditional densities are defined as

f(yt|st−2 = h, st−1 = i, st = j, ϕt−1) = 2π−n/2
∣∣∣f (h,i,j)
t|t−1

∣∣∣−1/2

exp

(
−1

2
η

(h,i,j)
t|t−1

(
f

(h,i,j)′

t|t−1

)−1

η
(h,i,j)′

t|t−1

)

and the filter probability of a regime j being in place at time is given by

Pr(st = j|ϕt) =

2∑
h=1

2∑
i=1

Pr(st−2 = h, st−1 = i, st = j|ϕt)

The by-products of the filter can be used to the calculate marginal density of yt

f(yt|ϕt−1) = f(yt, st−2 = h, st−1 = i, st = j|ϕt−1)

the approximate log likelihood is then given by

LL =

T∑
t=1

log(f(yt|ϕt−1)).

Finally, the likelihood of parameter sets that do not meet the following normalisation condition are set to
extremely low values that ensure the parameter draw is discarded.

Accomodative
InflationTargeting

st = 1
st = 2

{
Π∗H , αL
Π∗L, αH

}
where Π∗L < Π∗H and αL < αH . This condition is imposed to ensures identification and avoid the problem of
label-switching

5Information sets include observations of the data and lagged levels of the states.
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Table 1: Priors distributions for parameters of State-Dependent MS-DSGE models

Mean Standard Deviation Domain Density
α 1.5 0.25 R+ Gamma

π∗(annualised) 2 0.1 R+ Gamma
p̄11 0.95 0.15 [0,1) Beta
p22 0.95 0.15 [0,1) Beta
λ11 0 150 R Normal
ρr 0.75 0.4 [0,1) Beta
γ 0.15 0.4 R+ Gamma
κ 0.5 0.2 R+ Gamma
τ 1.5 0.4 R+ Gamma
β 0.998 Fixed [0,1) Beta
θ 10 4 R+ Gamma
ρξ 0.5 0.4 [0,1) Beta

ρu 0.5 0.4 [0,1) Beta
100σε 0.21 0.16 R+ Inv. Gamma
100σξ 1 0.52 R+ Inv. Gamma
100σu 0.38 0.38 R+ Inv. Gamma

Priors

Incorporating prior information when estimating model parameters provides additional curvature for the poste-
rior density and excludes implausible estimates of parameters. The prior distribution for the model parameters
is set following Lubik and Schorfheide (2004) and Davig and Doh (2014) and are presented in Table 1. The
prior distributions of switching parameters, i.e., annualised inflation target π∗ and monetary policy sensitivity
to inflation α, are the same in each regime. The prior distribution of the transition probabilities are centered
around values of 0.95; this implies an expected duration of each regime to be 20 quarters. For the state-
dependent regime, prior beliefs are expressed on the steady-state of the probability of remaining in this regime
p̄11. The degree of state-dependence λ11 follows a normal distribution centered around zero, though the prior
variance allows for a wide range of possible values. This prior distribution is set to reflect an agnostic belief
of the extent of state-dependence.

MCMC algorithm

The prior distributions and the approximate likelihood are combined to approximate the posterior distribution
of model parameters. A combination of numerical optimisers is used to find the mode of the posterior to
initiate the MCMC procedure. The simplex algorithm is first applied to refine starting values that are used as
input into for Chris Sims’ optimisation routine CSMINWEL.

The posterior mode is used to initiate the Metropolis-Hastings algorithm. I run 100,000 replications,
burning the first 50,000 and then save every 10th draw to leave 5000 draws that form the approximate
posterior.

4.3 Data
Estimation is based on U.S. data consisting of output, inflation and nominal interest rates from 1965Q1-
2009Q1. The sample dates are chosen to reflect the two monetary policy regimes accounted for. For example,
after the global financial crisis, the Federal Reserve hit the effective lower bound of nominal interest rates and
turned to alternative instruments to conduct monetary policy. Therefore, this regime does not fit either the
accommodative or inflation targeting regimes I allow for.

Output is log real GDP per capita which is HP detrended following Lubik and Schorfheide (2004). Inflation
is annualised percentage change in CPI. Nominal interest rate is the effective federal fund rate in percent. All
data is obtained from the FRED database.

The data is related to the state variables via the measurement equation

yt = z∗(st) +Hẑt
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Figure 1: Generated data from MS-DSGE model

Note: The first three panels display simulated data generated from the model economy with state-dependent monetary policy regimes, while,
the last panel displays the history of regimes.

 GDPt
Inflationt

InterestRatet

 =

 Π∗(A)
Π∗(A) + r∗(A)

+ 100

 ŷt
4π̂t
R̂



4.4 Simulation Evidence
The validity of the estimation procedure is tested on data generated from a general equilibrium model with
state-dependent monetary policy regimes. The data generating process is the solution of a version of the model
presented in section 3 simplified by assuming a constant inflation target of zero. Therefore, a monetary policy
regime is now defined as a change in the Taylor rule response to inflation. The model is state-dependent as
the probability of remaining in the relatively accommodative regime is inversely related to the level of inflation
in the previous period.

Accomodative
InflationTargeting

st = 1
st = 2

{
αL
αH

}
, αL < αH

State Dependence : p11t =
eV11(Πt−1)

1 + eV11(Πt−1)
with V11(Πt−1) = p̄11 + λ11(Πt−1)

The model parameters are set to values assumed in the calibration exercise of Barthélemy and Marx (2017)
. The economy is assumed to begin in steady state and is then simulated for 1000 periods. The data used for
estimation discards the first 100 generated observations and is plotted Figure 1below alongside the regimes
in place at each period of the sample. Initial values for estimation are prior values except for the degree
of state-dependence that is set to −200. The estimation procedure is the same as the one described in the
previous subsection and the results of the MCMC algorithm in Table 2. Overall, the posterior median estimates
are close to the parameters values used to generate the data.

14



Table 2: Parameters comparison of simulation exercise

Actual Estimated
α 1.1 4.3 1.22

[1.0,1.61]
4.46

[3.76,5.2]

p11 0.90 0.93
[0.93,0.94]

p22 0.95 0.98
[0.98,0.99]

λ11 −400 −375
[-375,-374]

ρr 0.7 0.74
[0.72,0.76]

γ 0.2 0.25
[0.2,0.27]

κ 0.17 0.24
[0.21,0.27]

τ 1 0.95
[0.70,1.16]

β 0.998
(Calibrated)

0.998
(Calibrated)

ρξ 0.8 0.67
[0.62,0.72]

ρu 0.8 0.8
[0.78,0.83]

100σε 0.1 0.1
[0.09,0.1]

100σξ 0.1 0.09
[0.065,0.1]

100σu 0.2 0.17
[0.16,0.18]

5 Results
This paper estimates three models that allow state variables to influence the probability of remaining in a mon-
etary policy regime that is relatively accommodative towards inflation. To evaluate the empirical significance
of the non-linearities considered I also estimate a model with switching regimes that are not state-dependent
and a constant parameter model.

5.1 Model comparison
To assess which form of state-dependence, if any, is accepted by the data, I calculate two model comparison
measures. The first, the marginal likelihood, is obtained by integrating the approximate posterior density of
the entire parameter space in each model and is expressed as

Pr(Yt) =

∫
θ

f(Yt|θ) Pr(θ)

where θ denotes the model parameters, f(Yt|θ) is the likelihood while Pr(θ) represents the prior distribu-
tions. The marginal likelihood can be approximated using the modified harmonic mean (MHM) method which
employs the following theorem

1

Pr(Yt)
=

∫
Θ

h(θ)

f(Yt|θ) Pr(θ)
f(θ|Yt)dθ

where h(θ) denotes a weighting function, i.e. a probability density function whose support is in Θ.
Numerically the integral above can be evaluated as

1

Pr(Yt)
=

N∑
i=1

h(θi)

f(Yt|θi) Pr(θi)

where i = 1...N indexes the draws from the MCMC samples. Following Geweke (1999) a normal density
is used as the weighting function. Although Sims, Waggoner and Zha (2008) suggest an elliptical density is
more appropriate for comparing time-varying DSGE model. However, in practice Davig and Doh (2014) and
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Table 3: Log marginal likelihood and Deviance Information Criterion for each estimated model

Marginal Likelihood DIC
Time-Invariant −1538 2893

Switching Rule: Without state-dependence −1327 2673
State-Dependent: lag Inflation −1278 2640
State-Dependent: lag Output −1320 2690

State-Dependent: Monetary Policy shock −1325 2678

Mumtaz and Liu (2011) find that the resulting estimate of the marginal likelihood using a elliptical density is
unstable and highly sensitive to draws away from the posterior.

Taking into account the difficulty in the accurate computation of the marginal likelihood for the class of
models estimated, the deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002), is also
used for model comparison. The DIC is a generalisation of the Akaike information criterion; penalising model
complexity and emphasising model fit to the data. The DIC is defined as

DIC = D̄ + pD

where D̄ measures model fit and is referred to as the deviance, it is the average of the log likelihood
multiplied by -2 after the evaluated for each MCMC draw and is given as

D̄ =
1

N

N∑
i=1

(−2 ln(Yt|θi))

pD = D̄ − (−2 ln(Yt|θ̄))

pD is the effective number of parameters and is defined as the deviance subtracted by the log-likelihood
evaluated at the posterior median multiplied by -2.

Table 3 below reports the values of the log marginal likelihood and DIC for each model. The preferred
model achieves the maximum marginal likelihood and the minimum DIC value.

Both measures indicate that the preferred model allows for state-dependence in the form of deviations of
inflation in the previous period from its target levels and firmly reject the time-invariant model. However there
are differences between the rankings implied by each measure. The marginal likelihood indicates that models
allowing for state-dependence fit better than the switching model without state-dependence. Whereas the
DIC shows a preference to the model without state-dependence relative to those that allow state-dependence
to be linked to the output in the previous period or the contemporaneous monetary policy shock.

Reflecting the model comparison exercise, the remainder of the paper will focus on comparing the results of
the preferred model that allows for state-dependence linked to inflation and the model with switching monetary
policy but no state-dependence.

5.2 Parameter estimates
The estimation results are presented in the Table 4. Parameter estimates are the median of the approximate
posterior with the 90% interval in brackets. The first column displays the parameter estimates of the time-
invariant model; which are broadly consistent with those of Lubik and Schorfheide (2004) and Davig and Doh
(2014). The second column displays the estimates of the switching model without state-dependence, and the
last column presents the estimates of the switching model where the accommodative regime is state-dependent
and linked to the distance of inflation away from its target in the previous period.

There are two main results worth highlighting. Firstly, regardless of state-dependence, both the accom-
modative and the inflation targeting regime are well identified. There is no overlap in the 90% intervals of the
annualised inflation target π∗ and the policy response to inflation α across the regimes. The filtered probabil-
ities of the state-dependent model suggests that the accommodative regime was in place from 1973-1985 and
is consistent with Davig and Doh (2014) and Bianchi (2013). However, the model also identifies a recession
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Table 4: Parameter estimates of alternative approaches to modelling monetary policy regime shifts

Constant Without state-dependence State-dependence πt−1

α 1.48
[1.13,2]

1.05
[.92,1.26]

2.86
[1.92,3.2]

1.02
[0.94,1.34]

2.4
[2.14,2.75]

π∗(annualised) 2.72
[1.45,3.96]

4.10
[3.18,4.76]

1.56
[1.04,2.14]

3.23
[2.78,3.65]

1.65
[1.17,2.04]

p11 - 0.90
[0.82,0.95]

0.91
[0.86,0.94]

p22 - 0.98
[0.96,0.99]

0.98
[0.97,0.99]

λ11 - - −33
[−52,−8]

ρr 0.87
[0.71,0.95]

0.71
[0.53,0.96]

0.76
[0.62,0.83]

γ 0.43
[0.15,0.63]

0.41
[0.23,0.65]

0.47
[0.34,0.64]

κ 0.64
[0.13,1.53]

0.43
[0.19,0.73]

0.32
[0.16,0.53]

τ 1.12
[0.78,1.63]

1.27
[0.56,1.83]

1.44
[1.13,1.75]

β 0.998
(Calibrated)

0.998
(Calibrated)

0.998
(Calibrated)

θ 8.42
[4.2,13.63]

10.25
[5.66,14.83]

11.25
[6.13,14.75]

ρξ 0.75
[0.44,0.94]

0.65
[0.46,0.74]

0.59
[0.55,0.67]

ρu 0.77
[0.6,0.84]

0.65
[0.52,0.74]

0.59
[0.48,0.67]

100σε 0.45
[0.21,0.72]

0.29
[0.15,0.42]

0.32
[0.18,0.47]

100σξ 1.01
[0.55,1.32]

0.89
[0.35,1.42]

0.74
[0.52,0.92]

100σu 0.53
[0.18,0.83]

0.63
[0.27,0.92]

0.72
[0.42,0.95]

period during 1991-1992 as period of accommodative monetary policy and is contrary to the narrative provided
by Davig and Doh (2014) and Bianchi (2013). This inconsistency may be due to not allowing for stochastic
volatility in the structural shocks, as the available monetary policy switch detects large sources of variations
which is further highlighted by a decrease in filter probability at the end of the sample.The second result and
the main finding of this paper is that the degree of state-dependence is significant. λ11 is negative as expected,
taking a value of −35 and the 90% interval is wide ranging between -52 and -8 but does not include zero which
implies no state-dependence. This finding indicates that the mechanism is accepted by the data and reinforces
the result of the model comparison exercise. The posterior median of λ11 is -33 and is much lower than the
values of -400 and -800 that Barthélemy and Marx (2017) consider in their calibration exercise. Although,
it is worth mentioning that as the time-varying transition probabilities are a logistic function of endogenous
variables, a value of -33 still implies a large degree of state-dependence.

The economic interpretation of the estimated magnitude of λ11 is best described by observing the dynamics
of the time-varying transition probabilities. The logit function is plotted in Figure 3 for values of inflation
±10% away from a target of 3.23% and the steady-state transition probability is fixed to the posterior median
estimate of 0.91. The black solid, black dashed and blue dashed line represent values of λ11 at the posterior
median, 10% and 90% percentile respectively. The red line with crosses represents the constant probability
of the switching model with no state-dependence. As inflation rises above the target level the probability of
remaining in the accommodative regime decreases, implying a reduction in the expected duration of the regime
given by 1

1−p11t
. For example, looking at the period identified when the accommodative regime was in place,

inflation in 1973 was around 5% and reached a peak level of close to 15% percent in 1979. Concentrating on
the posterior median estimates would result in transitions probabilities moving from 0.88 to 0.77 and decreasing
the expected duration of the regime from eight quarters to four.
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Figure 2: Filter probabilities from MS-DSGE model with state-dependent monetary policy regimes

Note: The solid blue lines are the posterior median filter probabilities and the shaded area represents the 68% credible sets.

Figure 3: Time-varying transition probabilities

Note: The black solid, black dashed and blue dashed line represents values of λ11 at the posterior median, 10% and 90% percentile respectively.
The red line with crosses represents the constant probability of the switching model with no state-dependence.
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Figure 4: Impulse responses conditional on being in the less aggressive monetary policy regime

Note: The solid black line represents the impulse response implied by the state-dependent model; the solid red line represents the responses
implied by the model estimated imposing no state-dependence and lastly the dashed black line represents the responses of the state-dependent
model setting the degree of state-dependence to zero.

6 The effect of state-dependence on the propagation of economic
shocks

Figure 4 presents the impulse responses conditional on the accommodative regime being in place at each period
of the considered horizon of ten quarters. All shocks are inflationary and are of the magnitude of one-standard
deviation.6

To evaluate the effect of state-dependence on the propagation of shocks, three sets of responses are
considered. The solid black line represents the impulse response implied by the state-dependent model; the
solid red line represents the responses implied by the model estimated imposing no state-dependence and
lastly the dashed black line represents the responses of the state-dependent model setting the degree of
state-dependence λ11 to zero.

Overall, the propagation of the shocks is theoretically consistent, as expected from structural models.
The responses of inflation are the main difference between the models estimated with and without state-
dependence. The median response of inflation is considerably lower for each inflationary shock in the model
with state-dependence.

This result could come from two possible channels; the difference between the set of parameters estimated
and the expectations effects generated by the reduction in transition probability of remaining in the accom-
modative regime. A way to isolate the expectations effects is the comparison of the black solid and dashed
line. However, these are almost identical suggesting the non-existence of the expectations channel. Therefore,
the lower inflation responses implied by the state-dependent model are primarily caused by the correspondingly
lower inflation target relative to the model with no-state dependence.

As a robustness check, I also follow Barthélemy and Marx (2017) in considering the difference between the
expected responses of a simulated economy that is in the accommodative regime and hit by a shock at time
t with the same economy in the absence of this shock. The benefit of this definition of the impulse response
is that it considers multiple histories of regimes and provides a way of observing whether the findings of
Barthélemy and Marx (2017) hold when their model is taken to the data. The impulse responses are presented

6Inflationary shocks are defined as an positive preference shock, a positive markup shock, and an expansionary monetary policy
shock.
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Figure 5: Unconditional impulse response functions

Note: The solid black line represents the impulse response implied by the state-dependent model; the solid red line represents the responses
implied by the model estimated imposing no state-dependence and lastly the dashed black line represents the responses of the state-dependent
model setting the degree of state-dependence to zero. Following Barthélemy and Marx (2017), the economy is initially (t = 0) at the steady
state, and then simulated until a approximation of the ergodic distribution is formed and then impulse responses are then computed (t=100,
following Barthélemy and Marx (2017). Simulation is across 200000 trajectories of regimes and shocks.

in Figure 5 and can be defined mathematically as E[yt+k|εt = σε, st = 1]− E[yt+k|εt = 0, st = 1]. All shocks
are again inflationary with a magnitude of one-standard-deviation. I label these responses as unconditional for
ease of comparison.
The signs of these responses are comparable with the conditional impulse responses. It is also worth noting the
effect of the lower inflation target in the state-dependent model is now removed as these are differences from
simulated paths. The responses of inflation are similar across the model with and without state-dependence.
The expectations channel now emerges but only appears to dampen the response of inflation to a markup
shock.

7 Conclusion
This paper investigates the possibility of monetary policy regime changes being influenced by the state of the
economy in a small scale New Keynesian model estimated on U.S. data. I estimate versions of the model
that allow the probability of remaining in a monetary policy regime that is relatively accommodative towards
inflation to vary over time and depend on endogenous model variables; in particular, either deviations of
inflation or output from their respective targets or a monetary policy shock. The model comparison exercise
indicates that U.S. data is best described by the model that allows for state-dependence linked to inflation and
the model with switching monetary policy but no state-dependence. Estimates from this model suggest that
the period between 1973-1985 was associated with a regime characterised by a relatively accommodative stance
towards inflation. The degree of state-dependence is significant and implies that while in an accommodative
regime, higher levels of inflation increase the probability of switching to a regime that aggressively targets
inflation. I present mixed evidence that state-dependence alters agents expectations through impulse response
analysis suggesting a dampening of inflation responses only to cost-push shocks relative when the mechanism
is shutdown. The estimated inflation target in the accommodative regime is lower when state-dependence is
enabled.
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Appendix
Benchmark model without regime change

For the empirical analysis presented in this paper, I consider a standard small-scale New Keynesian monetary
DSGE model. After log-linearization, the model without regime changes can be summarised by the following
three equations:

Ŷt = βEtŶt+1 − τ−1(R̂t − Etπ̂t+1 − (ξt − Etξt+1)) (11)

π̂t = βEtπ̂t+1 + κ(Ŷt +
ut
τ

) (12)

R̂t = ρr(R̂t−1) + (1− ρr)[α(π̂t) + γ(Ŷt) + εrt] (13)

where the index t denotes time belong to integers, Y is output, π is inflation, and R the nominal interest.
The variables with hats i.e Ŷ , π̂ and R̂ express log deviations from their respective steady-states.

Equation (1) is an intertemporal Euler equation obtained from the households’ optimal choice of con-
sumption and bond holdings. The current output gap Ŷt depends on it’s expected future value EtŶt+1, the
real rate interest R̂t − Etπ̂t+1 and a preference shock ξt. The parameter β is the households’ discount factor
and, τ denotes the elasticity of intertemporal substitution.

The new Keynesian Phillips curve in (2) suggests that inflation is related to expected future inflation
Etπ̂t+1 via discount factor β, the output gap through the slope term κ and a markup level ut.

The third equation describes the behavior of the monetary authority. The central bank adjusts the
nominal interest rate in response to deviations of inflation and output from their respective targets. The shock
εt captures unanticipated deviations from the policy rule and its standard deviation is denoted by σr. The
parameter ρ is the degree of interest rate smoothing, and α and γ are the reaction coefficients to inflation
and output gaps respectively.

The preference shock ξt and markup ût, evolve according to univariate AR(1) processes with coefficients
ρξ and ρu, their innovations have standard deviations by σξ and σu.

After collecting the state variables, shock innovations and model parameters in vectors, zt, vt and θ.

ẑt = Ŷt, R̂t, π̂t, ξt, ut,EtŶt+1,Etπ̂t+1︸ ︷︷ ︸
vt = εrt, εξt, εut︸ ︷︷ ︸

θ = β, τ, κ, α, γ, σr, σξ, σu︸ ︷︷ ︸
This constant parameter model can be written in the canonical form

A(θ)Et [ẑt+1] + B(θ)ẑt + C(θ)ẑt−1 + D(θ)vt. (14)

The model is then solved using the methods of Sims (2002) and estimated using Bayesian methods. The
Kalman filter is applied to obtain the likelihood function.
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